Dynamic Programming

An Introduction

Rong Li
School of Finance

Renmin University of China

July 8th, 2024

1/41

What you can learn

A basic introduction about dynamic programming in discrete time

Indirect utility
® Dynamic optimization: A cake-eating example

® Some extensions of the cake-eating problem

General formulation and the Contraction Mapping Theorem

Numerical Method: Value Function lteration and More

Applications

2/41

Indirect Utility: Consumers

Consumer choice theory focuses on households that solve

V(I, p) = maxcu(c)
subject to pc =/

where, ¢ is a vector of consumption goods, p is a vector of prices and / is income.

V(I,p): an indirect utility function, the maximized level of utility from current state (/, p).

Key logic: someone in this state can be predicted to attain this level of utility. One does

not need to know what that person will do with his income as long as he will act optimally.

3/41

Indirect Utility: Consumers

First Order Condition:

ui(e) _

P =) for all

where, X is the multiplier on the budget constraint and uj(c) is the marginal utility from
good j.

What happens if we give the consumer a bit more income? Welfare goes up by
Vl(lv P) >0

Can the researcher predict what will happen with a little more income? Not really since
the optimizing consumer is indifferent with respect to how this is spent:

ui(e) _ :
o = Vi(1, p) for all

4/41

Indirect Utility: Firms

Suppose a firm must choose how many workers to hire at a wage w given its stock of
capital k and product price p.

MN(w, p, k) = maxf(l, k)p — wl

M(w, p, k) summarizes the value of the firm given factor prices, the product price p, and
the stock of capital k.

Given M(w, p, k), we can directly compute the marginal value of allowing the firm some
additional capital as Mg (w, p, k) = pfe(/, k) without knowing how the firm will adjust its
labor input in response to the additional capital.

5/41

Dynamic Optimization: A Cake-Eating Example

Suppose you are presented with a cake of size Wj. At each point of time,
t=1,2,3,..., T, you can eat some of the cake but must save the rest.

Sl B u(c)

where 0 < 3 < 1 is called the discount factor. We assume that u() is real valued,
differentiable, strictly increasing, strictly concave and lim._ou'(c) — .

For now, we assume that the cake does not depreciate or grow. The evolution of the cake
over time:

Wt+l = Wt — Ct for t = 1,2, ceey T

How would you find the optimal path of consumption?

6/41

A Cake-Eating Example: Direct Attack

One approach is to solve the constrained optimization problem directly.
> B u(cr)
MG [fWe}] 2ue=1 0 UG
s.t. Wt+1 = Wt — Ct for t = 1,2, ceey T

Also there are nonnegativity constraints on consuming the cake given by ¢; > 0 and
W: > 0. Wi is given.

The flow constraints for each t could be combined, yielding:
S e+ Wrip =W and ¢ >0and Wryp >0

How would you find the optimal path of consumption?

7/4

A Cake-Eating Example: Direct Attack

Letting A be the multiplier on the constraint and ¢ be the multiplier on the nonnegativity
constraint on Wt 1. Largrange:

L= 8 u(ce) + M\WA — S e — Wirt) + oWrig

The first order conditions:

B () =Afort =1,2,..., T

and A = ¢

The nonnegativity constraints on c¢; are ignored, as we assume limq_,ou'(c) — oo.

Combining the equations:
u'(ce) = Bu'(ce41)

This is a necessary condition of optimality for any t, called Euler equation.
8/41

A Cake-Eating Example: Direct Attack

Euler equation:

u'(ce) = Bu'(ce41)

As long as the problem is finite, the Euler equation holds across all adjacent periods
implies that any finite deviations from a candidate solution that satisfies the Euler
equations will not increase utility.

Is this enough? Not quite. Imagine a candidate solution that satisfies the Euler equations
but has the property that Wt > c7 so that there is cake left over.

The Euler equation is necessary but not sufficient. Need Wy, 1 = 0. This constraint is
binding because A = ¢ > 0.

9/41

A Cake-Eating Example: Direct Attack

The nonnegativity constraint serves two important purposes.
First, in the absence of W11 > 0, the agent would want to set W71 = —o0.

Second, the fact that the constraint is binding in the optimal solution guarantees that
cake does not remain after period T.

The problem is pinned down by an initial condition Wj is given and a terminal condition
Wt41 = 0 and the set of T-1 Euler equations.

10/41

A Cake-Eating Example: Direct Attack

The solution to this problem be denoted by Vr (W), where T is the horizon of the
problem and W is the initial size of the cake.

V(W) represents the maximal utility flow from a T-period problem given a size W;
cake. We call this a value function.

11/41

A Cake-Eating Example: Dynamic Programming
Approach

Suppose we change the problem slightly: add a period 0 and give an initial cake of size
Wo.

By adding a period 0 to our original problem, we can take advantage of the information
provided in V7 (W).

maxXe, U(Co) + ﬁVT(Wl)
where
W1 = Wo — o, Wo given

Instead of choosing a sequence of consumption, we just find ¢y. Then W; is determined
and the value of the problem is given by V7(Wh4). This is a recursive formulation.

12/41

A Cake-Eating Example: Dynamic Programming
Approach

For the purposes of the dynamic programming problem, it does not matter how the cake
will be consumed after the initial period.

All that is important is the agent will be acting optimally and thus generating utility given
by Vr(Wh).

This is the principle of optimality, due to Richard Bellman.

13/41

A Cake-Eating Example: Dynamic Programming
Approach

The first order condition is given by
v (co) = BV (Wh)
The marginal gain from reducing consumption a little in period 0 is summarized by the

derivative of the value function.

We know V4 (Wy) = u/(a1) = Bfu/ (e + 1), for t =1,2,..., T -1
Yields, u'(¢t) = Bu'(ct41), for t =0,1,2,...; T — 1. A familiar Euler equation.

14 /41

Some extensions of the cake-eating problem:
Infinite Horizon

Mmax(c, e (Wi} Dot BTU(ce)

st. Wipi =Wy —cr fort=1,2, ...
In specifying this as a dynamic programming problem, we write
V(W) = maxccjo,wju(c) + BV(W — c) for all W

V(W) is the value of the infinite horizon problem starting with a cake of size W.

15 /41

Some extensions of the cake-eating problem:
Infinite Horizon

V(W) = max.cpo,wju(c) + BV (W — c) for all W

The STATE VARIABLE is the size of the cake W.
The CONTROL VARIABLE is the variable being chosen.
The dependence of the state tomorrow on the state today and the control today, given by

W' = W — c is called the TRANSITION EQUATION.

16 /41

Some extensions of the cake-eating problem:
Infinite Horizon

Alternatively, we can specify the problem so that instead of choosing today's consumption
we choose tomorrow's state:

V(W) = maxyreowju(W — W) + SV(W') for all W

This expression is known as a functional equation, called BELLMAN EQUATION.

The unknown in the Bellman equation is the value function itself: the idea is to find a
function V(W) that satisfies this condition for all W.

We can express all relations without an indication of time. This is the essence of

stationarity.
17 /41

Some extensions of the cake-eating problem:
Infinite Horizon

The next part of this lecture addresses the question of whether there exists a value
function that satisfies the Bellman equation. For now, we assume that a solution exists.

The first order condition is v/(c) = V(W)
The Benveniste-Scheinkman (BS) condition is V/(W) = u/(c)
Combine the two, get Euler equation, u/'(¢) = u'(¢’)

The link from consumption and the next period’s cake to the size of the cake is called
policy function:

c = p(W), W = (W) for all W

18/41

Some extensions of the cake-eating problem: Taste
Shocks

A convenient feature of the dynamic programming problem is the ease with which
uncertainty can be introduced.

Suppose that utility over consumption is given by, cu(c)
where ¢ is a random variable with € € {ep, ¢/} and both of them are greater than zero.

We assume that the taste shock follows a first-order Markov process, which means that
the probability that a particular realization of € occurs in the current period depends
ONLY on the value of ¢ in the previous period.

Denote, 7y, = Prob(e’ = eple = /). And I with elements of 7 is called transition

matrix.
19/41

Some extensions of the cake-eating problem: Taste
Shocks

The Bellman equation is written:
V(W,e) = maxyreo,wjeu(W — W) + BE | V(W' €') for all (W, ¢)

The first order condition is: eu'(W — W') = BE. . Vi(W',€") for all (W, ¢)
The Benveniste-Scheinkman (BS) condition is V4 (W, ¢) = e/ (W — W)

Combine the two, get Euler equation, su'(W — W') = BE,[¢'d' (W' — W")]

20/41

Some extensions of the cake-eating problem:
Discrete Choice

To illustrate the flexibility of the dynamic programming approach, we show a discrete
choice problem.

Suppose that the cake must be eaten in one period as a whole. And we modify the
transition equation to allow the cake to depreciate at rate p. An optimal stopping
problem.

Given the current taste shock, ¢, then
VE(W,e) = cu(W)
and
VN(W’ 5) = IBEE"E V(pW, 5/)
where
V(W,e) = max(VE(W,¢e), VN(W,¢)) for all (W, ¢)

21/41

Some extensions of the cake-eating problem:
Discrete Choice

VE(W,e) = cu(W)
and
VN(W7E) = /BEE’\E V(pW,g’)
where
V(W,¢e) = max(VE(W,), VN(W,¢)) for all (W,e)

eu(W) is the direct utility flow from eating the cake. Once the cake is eaten, the problem
has ended. So VE(W, ¢) is just a one-period return.

If the agent waits, then in the next period the cake is of size pW.

The agent needs to make decision between these two discrete choices.

22/41

General Formulation: Nonstochastic Case

A payoff function for period t given by &(s;, ¢t)
where, s; is the state vector and ¢; is the control vector.
The transition equation is s;11 = 7(s¢, ¢t).

NOTE: The state vector completely summarizes all of the information from the past that
is needed to make a forward-looking decision.

We assume ¢ € C and s € S and 6 (s, ¢) is bounded for (s,c) € S x C.

Two properties: stationarity (not depending on time) and discounting (0 < 5 < 1).

23/41

General Formulation: Nonstochastic Case

The Bellman equation:

V(s) = maxcec(s)d(s,c) + BV(s') forall s € S.

where, s' = 7(s, ¢).

Alternatively,

V(s) = maxgcr(syo(s,s’) + BV(s') forall s € S.
We need to find the value function that satisfies the Bellman equation.

24 /41

General Formulation: Nonstochastic Case

Theorem (1)

Assume that o(s,s’) is real-valued, continuous, and bounded, 0 < 8 < 1, and that the
constraint set, ['(s), is nonempty, compact and continuous. Then there exists a unique
value function V/(s) that solves the Bellman equation.

An intuitive sketch, we define an operator:
T(W)(s) = maxgcr(syo(s,s’) + BW(s') forall s € S.

We take a guess on the value function and produce another value function, T(W)(s).
The fixed point, V(s) = T(V)(s), of the mapping is a solution.

We need to show the T(W) is a contraction. Need to show monotonicity and discounting.
25 /41

General Formulation: Nonstochastic Case

Monotonicity: if W(s) > Q(s) for all s € S, then T(W)(s) > T(Q)(s) for all s € S.

Let ¢(s) be the policy function obtained from
maxgcr(s)0(s,s’) + BQ(s) for all s € S.
Then,

T(W)(s) = maxyer(s)o(s, s') + BW(s') > a(s, ¢q(s)) + BW(a(s)) =
(s, q(s)) + BQR(¢a(s)) = T(Q)(s) for all s € S.

26 /41

General Formulation: Nonstochastic Case

Discounting: adding a constant to W leads T(W) to increase by less than this constant.

We have

T(W + k)(s) = maxser(s)o (s, ')+ BIW(s') + k] = T(W)(s) + Bk < T(W)(s) + k for
allse S.

Since we assume that the discount factor is less than 1.

27 /41

General Formulation: Nonstochastic Case

The fact that T(W) is contraction allows us to take advantage of the contraction
mapping theorem.

This theorem implies that there is unique fixed point and this fixed point can be reached
by an iteration process using an arbitrary initial condition (value function iteration).

Guess Vo(s) for all s € S, then V4 = T(Vp). If Vi =V for all s € S, we have the
solution. Else, Vo, = T(V;), and continue iterating until T(V) = V.

Assignment: suppose u(c) = log(c), perform the value function iteration of our cake
eating problem using any computer language.

28/41

General Formulation: Nonstochastic Case

Theorem (2)

Assume that o(s, s') is real-valued, continuous, CONCAVE, and bounded, 0 < 3 < 1,
that S is convex subset of R¥, and that the constraint set, ['(s), is nonempty, compact
and continuous. Then the unique solution is stricly concave. Further the policy function
is a continuous, single-valued function.

The proof of the theorem relies on showing that strict concavity is preserved by T (V).
Given that o(s,s’) is concave, then the initial guess can be:

Vo(s) = maxger(s)o (s, s')

Vp is strictly concave. Since T (V) preserves this property, the solution to the Bellman

equation is strictly concave.
29 /41

General Formulation: Stochastic Dynamic
Programming

Let € € P, represent the vector of shocks and it is a first order Markov process.

The Bellman equation is
V(s,e) = maxscr(s,)0(s,s',€) + BELV(s', ') for all (s,).

Theorem (3)

Assume that (s, s',€) is real-valued, continuous, concave, and bounded, 0 < 8 < 1, and
that the constraint set, ['(s,€), is nonempty, compact and convex. Then,

1. there exists a unique value function V(s,e) that solves the above Bellman equation.
2. there exists a stationary policy function, ¢(s, €).

With 8 < 1, discounting holds and monotonicity holds as before. (An application of
Blackwell's theorem.) 30/41

Numerical Solution

A stochastic cake-eating problem:
V(W,y) = maxo<ccwyu(c) + BE,, V(W' y")

for all (W, y), with
W' =R(W —c+y)

Assume y is iid and define: X = W + y, the problem can be written as:

V(X) = maxg<c<xu(c) + BEV(X')

for all X, with
X' =R(X —c)+y

Note: if y is serially correlated, then it has to be a state variable.

31/41

Value Function lteration

Choosing a functional form for the utility function.

Discretizing the state and control variable.

Building a computer code to perform value function iteration.

Evaluating the value and the policy function.

32/41

Value Function lteration

® Choosing a functional form for the utility function.

33/41

Value Function lteration

® Discretizing the state and control variable as the computer cannot handle a
continuous state space.

® For simplicity, assume the cake endowment y can take two values: y; and yy with
probability 7w, and 7y, respectively.

® The space for X: Vg = {X"S}ZSZ1 € [X1, Xu]
® The space for C: W, = {C}]< | € [XL, XH]
® The Bellman equation can be written as:

V(X) = maxo<cexu(c) + 8 Y mV(R(X = c) +y)
i=L,H

for all X.

34/41

Value Function lteration

® Building a computer code to perform value function iteration.

e Starting with an initial guess Vp(X), Vo(X) can be any function, we compute a
sequence of value functions V;(X):

Vit1(X) = T(Vj(X)) = maxo<exu(c) + 8 > miVi(R(X = ¢) + yi)
i=LH

® The iterations are stopped when |V 1(X) — V;(X)| < € for all is, where ¢ is a small
number.

35/41

Value Function lteration

Evaluating the value and the policy function.

® Once the value function iteration piece of the program is completed, the value
function can be used to find the policy function, ¢ = ¢(X).

This is done by collecting all the optimal consumption values c’e for every value of
X,
® Note: we only know the value function and policy function at the grids ~{X"S},’-;5:1 and

{Cl}iey

36/41

Value Function lteration

i s=1

do until i_s>n_s

_L=X_L

"H=X[i_s]
c=1

“do until i_c>n_c

HQa
U

c=c_L+(c_H-c_L)/n_c*(i_c-1)
iy=1
EnextV=0

do until i_y>n_y

nextX=R* (X[i_s]-c)+Y¥[i_y]

nextV=V(nextX)

EnextV=EnextV+nextV+Pi[i_y]

aux[i_c]=u(c)+beta*EnextV

i_c=i_c+l
endo

newV[i_s,i_y]=max(aux)

i_s=i_s+1
endo

V=newV

* %

*

*

*

Loop over all sizes of the
total amount of cake X *

Min value for consumption *
Max value for consumption *

Loop over all consumption
levels *

Initialize the next value
to zero *

Loop over all possible
realizations of the future
endowment *

Next period amount of

cake *

Here we use interpolation
to find the next value
function *

Store the expected future
value using the transition
matrix *

End of loop over

endowment *

Stores the value of a given
consumption level *

End of loop over
consumption *

Take the max over all
consumption levels *

End of loop over size of
cake *
Update the new value

o d o~ ®

37/41

Value Function lteration: Value Function

y=2,7,=0.5, ny=0.5, $=0.95

-18.8

-19.2

—-19.6

—20.0 |

Value function

-204

-20.8

-21.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Total amount of cake 38 /41

Value Function lteration: Policy Function

Optimal consumption

09

08 T

0.7

06 |

05 T

0.4

y=2,7,=0.5, n4=0.5, $=0.95

0.4

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Total amount of cake

39/41

Numerical Solution

There are many other numerical methods, for example policy function iteration,
projection method, endogenous grid method, etc.

40/41

Conclusion

This lecture has provided a theoretical structure for the dynamic optimization problems
that can be used widely in economic analysis.

Slides can be found at www.rongli.cc

41/4

	First Section

