An Introduction to Julia in Economics

Yang Guang

Department of Economics
Nankai University

2024.07.10 / Shenzhen

Contents

@ Introduction
© Techniques
© Dynamic Programming

Q@ Summary

Introduction
00000000000

What is Julia

@ Julia is a very young but promising programming language
focused on scientific computing. Its development began in
2009 while the first version was provided in 2012. Julia is a
free and open source programming language with a license
provided by MIT.

@ The main attractiveness of the Julia comes from combining
the high level syntax of languages like Python and Matlab with
the speed of low level languages like Fortran or C/C++.

@ For macroeconomists, Fortran is still quite used since it
provides a fast solution to computational intensive problems.
Julia provides two solutions. First, it can easily embed Fortran
(as well as C/C++ code). Second, it also makes possible to
write the entire code in Julia, while keeping the execution
speed comparable to the ones by Fortran or C/C++.

Introduction
0e000000000

Installation

@ Julia can be run under Windows, Linux and OSX. As this
slides was finished, Julia was at version 1.10.4.)

@ It is not strictly required, but | will strongly encourage
installing and using Visual Studio Code (VS Code) to perform
Julia.

@ For instructions in Chinese for installation of Julia and VS
Code, please refer to:
https://zhuanlan.zhihu.com/p/163809924

@ For instructions in English for installation of Julia and VS
Code, please refer to:
https://code.visualstudio.com/docs/languages/julia

https://zhuanlan.zhihu.com/p/163809924
https://code.visualstudio.com/docs/languages/julia

Introduction
[e]e] lelelelelelele]e)

Installation

@ | here simply introduce the installation:

© Download Julia from the official website:
http://julialang.org/downloads/

@ Install VS Code from the official website:
https://code.visualstudio.com/download.

© Start VS Code. Inside VS Code, go to the Extensions view by
clicking View on the top menu bar and then selecting
Extensions.

@ In the Extensions view, search for the term "julia" in the
Marketplace search box, then select the Julia extension
(julialang.language-julia) and select the Install button.

@ Restart VS Code.

http://julialang.org/downloads/
https://code.visualstudio.com/download

Introduction
[e]e]e] lelelelelele]e)

Understanding REPL

e REPL stands for Read/Evaluate/Print/Loop. When we start
the Julia command prompt, it will provide a REPL window that
is the most direct way to access the above named operations.

@ To use REPL, we simply type statements and press enter so
that Julia can execute them. For example, by writing:

Julia> x=0
0

@ We can access help, pretty much like in other programming
languages, by writing:

Julia> 7

After accessing the help mode, we can search functions by
their names. For example, by writing:

Help?> sum

Introduction
0000e000000

Script

We can write the program in a script and then run it.

In Julia script, the contents following ’#’ is
comment

Load the package we need
using LinearAlgebra, Random # , and all installed
package you need

By default, the run script show only the result of
the last expression. If you want to check results
in some specific steps, you should ask for
functions ’println’, ’show’, etc. If you want to
hide even the last expression, you can append the
’;? at the end of command line.

pos_response="No problem."
println(pos_response)
neg_response="Sorry."

Introduction
[ee]e]e]e] lelelelele)

Running

@ We can set and use a function in script:

script.jl
function greet(name)
println("Hello, $name!")

end

greet ("Julia")

@ We can change the directory in REPL to the script located in:

julia> cd("/path/to/new/directory")

@ Then, we can run the scrpit in REPL:

julia> include ("/path/to/script.jl")
Hello, Julia!

Introduction
00000080000

Packages

@ Once we download and install Julia, we can access the
so-called standard library in Julia.

@ Similarly to other free software, like R or Python, Julia allows
external contributors to build and make available third party
packages. These are available through Git, see
https://github.com/.

@ The list of currently available Julia packages can be found at:
http://pkg.julialang.org.

https://github.com/
http://pkg.julialang.org

Introduction
[ee]e]e]elele] lelele)

Packages

@ Some useful packages for economists from Julia's Standard
Library (using without adding):

o LinearAlgebra: Provides essential linear algebra operations
such as matrix factorizations, eigenvalues, and solving linear
systems.

o Statistics: Offers basic statistical functions like mean, median,
variance, and correlation coefficients.

e Random: Facilitates random number generation and sampling
from various distributions, crucial for Monte Carlo simulations
and stochastic processes.

e Dates: Handles date and time calculations, useful for time
series analysis and economic modeling involving temporal data.

@ To start using these packages, we can write:

using LinearAlgebra, Statistics

Introduction
00000000800

Packages

@ The baseline Julia installation comes with a built-in package
manager called Pkg. We can use when in Julia’s package
management mode (enterying by pressing ']" and exiting by
pressing 'Backspace'):

© Add a package:

(@v1.10) pkg> add PackageName

@ Update all packages:

(@v1.10) pkg> Update

© Remove a package:

(@v1.10) pkg> remove PackageName

@ List installed packages:

(@v1.10) pkg> status

Introduction
00000000080

Packages

@ Some useful packages for economists from Julia's Standard
Library (using after adding):

o Distributions.jl: Provides a wide range of probability
distributions and functions for generating random variables,
essential for statistical modeling and hypothesis testing.

o DataFrames.jl: Offers tools for working with tabular data,
including data manipulation, merging, and statistical
operations, critical for data-intensive economic analysis.

e Optim.jl: Provides optimization algorithms for nonlinear and
linear optimization problems, which are frequently encountered
in economic modeling and parameter estimation.

o Plots.jl: A versatile plotting package that supports various plot
types and customization options, crucial for visualizing
economic data and model outputs effectively.

Introduction
000000000 0e

References

@ The most faithful companion:
o Chat GPT
o Textbook:

o Caraiani P. Introduction to Quantitative Macroeconomics
Using Julia: From Basic to State-of-the-Art Computational
Techniques[M]. Academic Press, 2018.

also there is Chinese version.

o
@ Website for tutorials:

e https://julia.quantecon.org/

o https://juliaeconomics.com/
e BBS in Chinese for deeper programming demand:

e https://cn.julialang.org/JuliaZH.jl/latest/
e https://discourse.juliacn.com/

https://julia.quantecon.org/
https://juliaeconomics.com/
https://cn.julialang.org/JuliaZH.jl/latest/
https://discourse.juliacn.com/

Techniques
00000000000000

Data

Bool false, true

Int, Int8, ..., Int128 123,1 000 000, UInt128(2)"127
Ulnt, UInt8, ..., UInt128 0xff, 0x0012, 0b1011, 00377
Float64, Float32, Floatl6 .5, 1.0, 3e6, 2.3f9, NaN, -Inf16

ComplexFloat64 0.0 + 1.0im

Rationallnt64 3//4+1//2==5//4

Char 'a’, "\n’, "\u20ac’

String "hi", "l'am \"%name \"", "1+1=%(1+1)"
Symbol ‘test

VectorInt = Arraylint,1 [1, 2, 3]

MatrixInt = ArrayInt,2 [12;34]
Tuplelnt64,Char,Bool (1, 'a’, false)

Nothing nothing

Missing missing + 1 == missing

Techniques

0@000000000000

@ DataFrame:

using DataFrames

df = DataFrame(Name = ["Alice", "Bob", "Charlie"],
Age = [30, 24, 35], Salary = [70000, 40000,
90000])
@ Dictionary Types:
params = Dict("alpha" => 0.05, "beta" => 0.9)
@ Statistical Distributions:

using Distributions
dist = Normal (0, 1)
sample = rand(dist,

100)

Techniques
00000000000000

LinearAlgebra

@ 'dot’: Computes the dot product of two vectors.

vi = [1, 2, 3]
v2 = [4, 5, 6]
dot_product = dot(vl, v2)

@ cross: Computes the cross product of two 3-dimensional
vectors.

vi = [1, 0, 0]
v2 = [0, 1, O]
cross_product = cross(vl, v2)

e norm: Computes the norm (magnitude) of a vector.

v = [3: 4]
vector_norm = norm(v)

Techniques
000@0000000000

LinearAlgebra

e det: Computes the determinant of a matrix.

A= [1 2; 3 4]
determinant = det (A)

@ inv: Computes the inverse of a matrix.

inverse_A = inv(A)

e rank: Computes the rank of a matrix.

‘matrix_rank = rank (A)

e trace: Computes the trace of a matrix (sum of diagonal
elements).

‘matrix_trace = tr(A)

Techniques
0000@000000000

LinearAlgebra

@ eigvals and eigvecs: Computes the eigenvalues and
eigenvectors of a matrix.

A= [1 2; 2 3]
eigenvalues = eigvals (A)
eigenvectors = eigvecs(A)

@ svd: Computes the Singular Value Decomposition (SVD) of a
matrix.

SVD = svd(A)
v, S, v = svD.U, SVD.S, SVD.V

@ cholesky: Computes the Cholesky decomposition of a positive
definite matrix.

chol = cholesky (A)
L = chol.L

Techniques
00000@00000000

LinearAlgebra

o \ (Backslash Operator): Solves the linear system Ax = b.

A= [1 2; 3 4]
b = [5, 6]
x=A\Db

@ transpose (or adjoint): Computes the transpose (or Hermitian
transpose) of a matrix.

At = transpose(A) # Transpose
Ah = adjoint (A) # Hermitian transpose

o Computes the QR decomposition of a matrix.

Q, R = qr(4)

Techniques

000000e0000000

o Write the DataFrame to a CSV file

df = DataFrame (Name = ["Alice", "Bob", "Charlie"],
Age = [30, 24, 35], Salary = [70000, 40000,
900001)

CSV.write("data.csv", df)

@ Read the CSV file

df = CSV.read("data.csv", DataFrame)

Techniques
0000000@000000

Statistics

@ Descriptive statistics unction from Library

df _ds_function = describe (df)
show (df _ds_function)

julia> show(df_ds_function)
3x7 DataFrame
variable mean min median nmissing eltype

Alice Charlie String7
29.6667 24 30.0 35 Int64
66666.7 40000 70000.0 906060 Int64

Techniques
0000000000000

Statistics

@ Descriptive statistics Calculated by ourselves

mean_age = mean(df.Age) # Calculate Mean
median_age = median(df.Age) # Calculate Median
std_age = std(df.Age) # Calculate Standard Errors

var_age = var(df.Age) # Calculate Variance
min_age = minimum(df.Age) # Calculate Minimum
max_age = maximum(df.Age) # Calculate Maximum

ql_age, gq2_age, q3_age = quantile(df.Age, [0.25,
0.5, 0.75]) # Calculate Quantile

df _ds_myself = DataFrame(variables = ["Age",

Salary"], mean = [mean_age, mean_salary],
median = [median_age, median_salary], std = [
std_age, std_salary], variance = [var_age,
var_salary], minimum = [min_age, min_salary],

maximum = [max_age, max_salary])

Techniques
000000000e0000

Random

x = rand() # Generates a random float in the range
[0.0, 1.0)

y = randn() # Generates a random float from a
standard normal distribution (mean=0, std=1)

arr_normal = randn(5) # Generates an array of 5
random floats from a standard normal distribution

matrix_normal = randn(2, 3) # Generates a 2x3 matrix

of random floats from a standard normal
distribution

perm = randperm(10) # Generates a random permutation
of integers from 1 to 10

original_arr = [1, 2, 3, 4, 5]

shuffled_arr shuffle(original_arr) # Randomly
shuffles the elements of the array

Random.seed!(1234) # Sets the seed for the random
number generator

Techniques
0000000000 e000

There are some useful functions in Random library:

Returns the current date and time
time_now = now ()

Creates a Date object for July 10, 2024
d = Date (2024, 7, 10)

Creates a DateTime object for July 10,
dt = DateTime (2024, 7, 10, 10, 30, 00)

Subtracts 10 days from the date d
d_minus_10 = 4 - Day(10)

Adds 5 hours to the DateTime dt
dt_plus_bhrs = dt + Hour (5)

2024,

10:30

Techniques
0000000000080

There are some useful functions in Dates library:

Date, DateTime and string

formatted_datetime = Dates.format(dt, "yyyy-mm-dd HH:
MM:SS") # Formats the datetime dt as "2024-07-10
10:30:00"

parsed_datetime = DateTime ("2024-07-10 10:30:00", "
yyyy-mm-dd HH:MM:SS") # Parses the string
"2024-07-10 10:30:00" into a Date object

Get the part from a Date or DateTime
d_year = year(d) # Extracts the year
d_month = month(d) # Extracts the month
d_day = day(d) # Extracts the day

d_hour = hour(dt) # Extracts the hour
d_minute = minute(dt) # Extracts the minute
d_second second (dt) # Extracts the second

1]

Techniques
000000000000 e0

There are examples about ploting.

Generate some example data
x = 1:10
y = rand(10)

Plot a line graph

plotxy=plot(x, y, label="Random Data", xlabel="X",
ylabel="Y", title="Example Plot")

Plot a scatter plot

scatterxy=scatter(x, y, label="Scatter Plot",
markersize=8, marker=:circle, color=:red, title="
Example Scatter")

Save the plot as a PNG file
savefig ("plot_example.png")

Display the plot
display(plotxy)

Techniques
000000000000 0e

Example Plot

1.00
075 \ \ /
- asml N\, \
0.25 \ \/
0.00 H
2 4 G 8 10
X
Example Scatter
1.00
[} ° °
[]
075
[}
L
0.50 ®
[]
025
[]
Scatter Plot
0.00
2 4 6 8 10

Dynamic Programming
000000000

Example

o Consider a Neoclassical growth (RCK) model, the
representative household maximizes present as well as
expected future utility.

max Zﬁtu(c(t)), (1)
t=0

where 3 denonting the discount factor.
@ The budget constraint of the household as follow:

kt+1 = f(kt) — Ct — (Skt, (2)

where ¢ is depreciate rate.

Dynamic Programming
0@0000000

Example

@ Without loss of generality, we set utility function and
production function be:

uce) = l—0

f(kt) == kta

@ The Bellman function and first-order conditions are:

{ (ke® — Sk — key1)' 7

v(k¢) = max

ket1 l1—-0

+ Bv(kt-i-l)}

@ According to mapping contraction theorem, we can solve this
problem by iterating computation program.

Dynamic Programming
[e]e] lelele]ele]e)

The computation can be performed in Julia:

Define parameters

numits = 240 # number of interation

beta = 0.98

sigma = 0.5

delta = 0.1

alpha = 0.4

kss=((1-betax*x(1-delta))/(alphax*xbeta)) ~(1/(alpha-1))

Define array of variables

numk = 1000 # number of k

kO = range (0.01*kss,2*kss,numk)

vlast = zeros (numk) # value

k1 = similar(kO) # the next period capital

Dynamic Programming
[e]e]e] lele]ele]e)

Define Value function
function valfun(ktl,kt,alpha=alpha,delta=delta,sigma=

end

sigma ,k0=k0,vlast=vlast)

ktl is control variable

kt is state variable

itp = LinearInterpolation(kO, vlast)

vktl = itp(ktl)

ct=kt~alpha-ktil+(1-delta)*xkt;

if ct<=0
val=-888-800*abs(ct); # keep consumption from

going negative

else
val=ct~(1-sigma)/(1-sigma)+beta*vktl;

end

return -val;

change value to negative since "optimize" finds
minimum

Dynamic Programming
[e]e]e]e] leelele)

Calculate recursively

for i = 1:numits
for j = 1l:numk
kt = k0[j]

result = optimize(ktl -> valfun(ktl,kt),
minimum(k0), maximum(kO), GoldenSection ())

k1[j] = result.minimizer
vlast[j] = -result.minimum
end
end

Dynamic Programming
[e]e]e]e]e] lelele)

Plot policy function and value fucntion
v = vlast

cl = kO."alpha .-k1 .+ (1-delta)*kO;

figure_policy_function=plot(k0, k1, xlabel="Capital",
ylabel="Capital Next Period", title="Optimal
Policy Function")

figure_value_function=plot(kO, v, xlabel="Capital",
ylabel="Value", title="0Optimal Value Function")

display(figure_policy_function)
display(figure_value_function)

Results

12

+1

Capital Next Period k,

—
f=J

=]

Dynamic Programming
000000800

Optimal Policy Function

Capital k,

15

Results

Dynamic Programming
000000080

125

120

Capital Next Period V(%)

110

Optimal Value Function

Capital &,

15

Dynamic Programming
00000000e

Now, Dynare can run on Julia.
The most part of .mod file is same as on Matlab.
Run .mod file in Julia REPL:

pkg> add Dynare
Julia> using Dynare
Julia> context = @dynare "RBC.mod"

Summary
[]

Summary

o Compared to traditional programming languages used in
economics (such as Matlab, R, and Python), Julia processes
large datasets and computationally intensive tasks more
quickly.

@ Julia has a concise and intuitive syntax, making it easy to
learn and use, allowing economics researchers to write and
debug code quickly.

e Julia's interactive programming environment (such as VS
Code) enhances research flexibility and reproducibility,
facilitating the sharing and presentation of economic research
results.

	Introduction
	Techniques
	Dynamic Programming
	Summary

