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Introduction

From the perspective of business cycle theory, consumption is the largest component of
total expenditures. One of the main aspects of consumption theory is the theme of
consumption smoothing. This is evident in the data as the consumption of nondurables
and services is not as volatile as income. In the GDP accounts durable expenditures is one
of the relatively more volatile elements. Our theories and estimated models must confront
these important facts.
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Two-period Problem
• The consumer maximizes the discount present value of consumption over the
two-period horizon. Assuming that preferences are separable across periods, we
represent lifetime utility as:

1∑
t=0

βtu(ct) = u(c0) + βu(c1)

• The consumer is endowed with some initial wealth at the start of period 0 and earns
exogenous income yt in period t = 0, 1.

• We assume that the agent can freely borrow and lend at a fixed interest rate between
each of the two periods of life. The budget contraints:

a1 = r0(a0 + y0 − c0) and a2 = r1(a1 + y1 − c1)

at is the agent’s wealth at the start of period t. rt represents the gross return on
wealth between period t and period t+1. We restrict consumption to be nonnegative
and the stock of assets remaining at the end of the consumer’s life (a2) must be
nonnegative. 3 / 21



Two-period Problem
• Combine the two budget contraints for each period, we get a lifetime budget
contraint:

a2
r1r0

+
c1
r0

+ c0 = (a0 + y0) +
y1
r0

• The FOC with respect to c1, c2 yields:

u′(c0) = λ = βr0u
′(c1)

where λ is the multiplier on the lifetime budget constraint.
• The FOC with respect to a2:

0 < λ = ϕ

where ϕ is the multiplier on the nonnegativity constraint for a2.
• a2 = 0 and the lifetime budget constraint is:

c1
r0

+ c0 = a0 + y0 +
y1
r0

= w0

where w0 is lifetime wealth for the agent in terms of period 0 goods.
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Two-period Problem

• As an example, suppose utility is quadratic in consumption:

u(c) = a+ bc − d

2
c2

• In this case the Euler condition simplifies to:

b − dc0 = βr0(b − dc1)

• With the further simplification that βr0 = 1, we have constant consumption: c0 = c1.
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Stochastic Income

• We now add uncertainty to the problem by supposing that income in period 1 y1 is
not known to the consumer in period 0. Further we use the result of a2 = 0 and
rewrite the optimization problem more compactly as

maxc0Ey1|y0 [u(c0) + βu(R0(a0 + y0 − c0) + y1)]

where we have substituted for c1 using the budget constraint.

• we assume that y1 = ρy0 + ε1, here ε1 is a shock to income that is not forecastable
using period 0 information.

• The Euler equation for this problem is given by

u′(c0) = Ey1|y0βR0u
′(R0(a0 + y0 − c0) + y1)
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Stochastic Income

• The special case of quadratic utility and βR0 = 1, for this case the Euler equation
simplifies to

c0 = Ey1|y0c1 = R0(a0 + y0 − c0) + Ey1|y0y1

• Solving for c0 yields

c0 =
R0a0
1 + R0

+ y0
Ro + ρ

1 + R0

• We have
∂c0
∂y0

=
R0 + ρ

1 + R0

• In the extreme case of iid income shocks ρ = 0, consumers will save a fraction of an
income increase and consume the remainder.

• In the opposite extreme of permanent shocks ρ = 1, current consumption moves one
for one with current income. The sensitivity of consumption to income variations
depends on the permanence of those shocks.
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Portfolio Choice

• A second extension of the two-period problem is the addition of multiple assets.

• Assume that the household has no initial wealth and can save current income
through these two assets. One is nonstochastic and has a one period gross return of
Rs . The second asset is risky with a return denoted by R̃ r and a mean return of R̄ r .

• Let ar and as denote the consumer’s holdings of asset type j = r , s. Assets’ prices
are normalized at 1 in period 0.

• The consumer’s choice problem can then be written as

maxar ,asu(y0 − ar − as) + ER̃rβu(R̃
rar + Rsas + y1)
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Portfolio Choice
• Here we make the simplifying assumption that y1 is known with certainty. The
first-order conditions are

u′(y0 − ar − as) = βRsER̃ru
′(R̃ rar + Rsas + y1)

and
u′(y0 − ar − as) = βER̃r R̃

ru′(R̃ rar + Rsas + y1)

• Combine the above two equations, we have

Rs = R̄ r +
cov [R̃ r , u′(R̃ rar + Rsas + y1)]

ER̃ru′(R̃ rar + Rsas + y1)

• If the agent holds both the riskless and the risky asset (ar > 0 and as > 0), then the
strict concavity of u(c) implies that the covariance must be negative. In this case,
R̄ r must exceed Rs : the agent must be compensated for holding the risky asset.

• If R̄ r is less than Rs , the agent will sell the risky asset and buy additional units of
the riskless asset.
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Borrowing Restrictions

• A final extension of the two-period model is to impose a restriction on the borrowing
of agents.

• To illustrate, consider a very extreme constraint where the consumer is able to save
but not to borrow: c0 ≤ y0.

• Thus the optimization problem of the agent is

maxc0≤y0 [u(c0) + βu(R0(y0 − c0) + y1)]

• Denote the multiplier on the borrowing constraint by µ, the first order condition is
given by

u′(c0) = βR0u
′(R0(y0 − c0) + y1) + µ
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Borrowing Restrictions

• If the constraint does not bind, then the consumer has nonnegative savings and the
familiar Euler equation for the two-period problem holds. However, if µ > 0, then
c0 = y0 and

u′(y0) > βR0u
′(y1)

The borrowing constraint is less likely to bind if βR0 is not very large and if y0 is
large relative to y1.

• An important implication of the model with borrowing constraints is that
consumption will depend on the timing of income receipts and not just w0.
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Infinite Horizon Formulation

• Consider a household with a stock of wealth denoted by A, a current flow of income
y, and a return on its investments over the past period given by R−1.

• The state vector of the consumer’s problem is (A, y ,R−1), and the associated
Bellman equation is

v(A, y ,R−1) = maxcu(c) + βEy ′,R|R−1,yv(A
′, y ′,R)

for all (A, y ,R−1)

• The transition equation for wealth is given by

A′ = R(A+ y − c)
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Infinite Horizon Formulation: Stochastic Income

• The case we study is (fixed R)

v(A, y) = maxcu(c) + βEy ′|yv(A
′, y ′)

where A′ = R(A+ y − c) for all (A, y).

• The Euler equation is
u′(c) = βREy ′|yu

′(c ′)

The interpretation of this equation is that the marginal loss of reducing consumption
is balanced by the discounted expected marginal utility from consuming the proceeds
in the following period.
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Infinite Horizon Formulation: Stochastic Income

• As a leading example, consider the specification of utility

u(c) =
c1−γ − 1

1− γ

This is called the constant relative risk aversion case (CRRA), since
−cu′′(c)/u′(c) = γ.

• The Euler equation can be written as

1 = βRE (
c ′

c
)−γ

• This equation is then used to estimate the parameters of the utility function, (β, γ).
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Stochastic Returns: Portfolio Choice

• Assume that there are N assets available. Let R−1 denote the N-vector of gross
returns between the current and previous period and let A be the current stock of
wealth.

• Let si denote the share of asset i = 1, 2, ...,N held by the agent.

• Normalizing the price of each asset to be unity, the current consumption of the agent
is then

c = A−
∑
i

si

• Substituting this into the Bellman equation, we have

v(A, y ,R−1) = maxsiu(A−
∑
i

si ) + βEy ′,R|R−1,yv(
∑
i

Ri si , y
′,R)

where Ri is the stochastic return on asset i .
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Stochastic Returns: Portfolio Choice

• The first-order condition for the optimization problem holds for i = 1, 2, ...,N, and it
is

u′(c) = βER,y ′|R−1,yRivA(
∑
i

Ri si , y
′,R)

• The Euler equation is
u′(c) = βER,y ′|R−1,yRiu

′(c ′)

for i = 1, 2, ...,N

• This system of Euler equations forms the basis for financial models that link asset
prices to consumption flows.
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Empirical Implementation

• The starting point for the analysis is the Euler equation for the household’s problem
with N assets.

• We rewrite that first-order condition here using time subscripts to show the timing of
decisions and realizations of random variables:

u′(ct) = βEtRit+1u
′(ct+1)

for i = 1, 2, ...,N where Rit+1 is defined as the real return on asset i between periods
t and t+1.

• The expectation here is conditional on all variables observed in period t. Unknown
t+1 variables include the return on the assets as well as period t+1 income.
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Empirical Implementation

• The power of the GMM approach derives from this first-order condition.

• What the theory tells us is that while ex post this first order condition need not hold,
any deviations from it will be unpredictable given period t information.

• That is, the period t+1 realization say, of income, may lead the consumer to increase
consumption is period t+1, thus implying ex post that the first order condition does
not hold. This deviation is consistent with the theory as long as it is not predictable
given period t information.

• Formally, define εit+1(θ) as

εit+1(θ) =
βRit+1u

′(ct+1)

u′(ct)
− 1

for i = 1, 2, ...,N. Thus εit+1(θ) is a measure of the deviation for an asset i. We have
added θ as an argument in this error to highlight its dependence on the parameters
describing the household’s preferences.
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Empirical Implementation

• Household optimization implies that

Et(ε
i
t+1(θ)) = 0

for i = 1, 2, ...,N
• Let zt be a q-vector of variables that are in the period t information set. This

restriction on conditional expectations implies that

E (εit+1(θ)⊗ zt) = 0

for i = 1, 2, ...,N where ⊗ is the Kronecker product.
• So the theory implies the Euler equation errors from any of the N first-order
conditions ought to be orthogonal to any of the zt variables in the information set.
There are Nq restrictions created.

• The idea of GMM estimation is then to find the vector of structural parameters θ
such that the above equation holds.
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Empirical Implementation

• Of course, applied economists only have access to a sample, say of length T.

• Let mT (θ) be an Nq vector where the component relating asset i to one of the
variables in zt , z

j
t , is defined by

1

T

T∑
t=1

(εit+1(θ)z
j
t ).

• The GMM estimator is defined as the value of θ that minimizes

JT (θ) = mT (θ)
′WTmT (θ)

where WT is an Nq × Nq matrix that is used to weight the various moment
restrictions.
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Conclusion

This lecture has provided an application of nondurable consumption model.

Slides can be found at www.rongli.cc
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