
Dynamic Programming
An Introduction

Rong Li
School of Finance

Renmin University of China

July 8th, 2024

1 / 41

What you can learn

• A basic introduction about dynamic programming in discrete time

• Indirect utility

• Dynamic optimization: A cake-eating example

• Some extensions of the cake-eating problem

• General formulation and the Contraction Mapping Theorem

• Numerical Method: Value Function Iteration and More

• Applications

2 / 41

Indirect Utility: Consumers

Consumer choice theory focuses on households that solve

V (I , p) = maxcu(c)
subject to pc = I

where, c is a vector of consumption goods, p is a vector of prices and I is income.
V (I , p): an indirect utility function, the maximized level of utility from current state (I , p).

Key logic: someone in this state can be predicted to attain this level of utility. One does
not need to know what that person will do with his income as long as he will act optimally.

3 / 41

Indirect Utility: Consumers

First Order Condition:

uj (c)
pj

= λ for all j

where, λ is the multiplier on the budget constraint and uj(c) is the marginal utility from
good j.

What happens if we give the consumer a bit more income? Welfare goes up by
VI (I , p) > 0

Can the researcher predict what will happen with a little more income? Not really since
the optimizing consumer is indifferent with respect to how this is spent:

uj (c)
pj

= VI (I , p) for all j

4 / 41

Indirect Utility: Firms

Suppose a firm must choose how many workers to hire at a wage w given its stock of
capital k and product price p.

Π(w , p, k) = maxl f (l , k)p − wl

Π(w , p, k) summarizes the value of the firm given factor prices, the product price p, and
the stock of capital k.

Given Π(w , p, k), we can directly compute the marginal value of allowing the firm some
additional capital as Πk(w , p, k) = pfk(l , k) without knowing how the firm will adjust its
labor input in response to the additional capital.

5 / 41

Dynamic Optimization: A Cake-Eating Example

Suppose you are presented with a cake of size W1. At each point of time,
t = 1, 2, 3, ...,T , you can eat some of the cake but must save the rest.∑T

t=1 β
t−1u(ct)

where 0 ≤ β ≤ 1 is called the discount factor. We assume that u() is real valued,
differentiable, strictly increasing, strictly concave and limc→0u

′(c) → ∞.

For now, we assume that the cake does not depreciate or grow. The evolution of the cake
over time:

Wt+1 = Wt − ct for t = 1, 2, ...,T

How would you find the optimal path of consumption?

6 / 41

A Cake-Eating Example: Direct Attack

One approach is to solve the constrained optimization problem directly.

max{ct}T1 ,{Wt}T1

∑T
t=1 β

t−1u(ct)

s.t. Wt+1 = Wt − ct for t = 1, 2, ...,T

Also there are nonnegativity constraints on consuming the cake given by ct ≥ 0 and
Wt ≥ 0. W1 is given.

The flow constraints for each t could be combined, yielding:∑T
t=1 ct +WT+1 = W1 and ct ≥ 0 and WT+1 ≥ 0

How would you find the optimal path of consumption?

7 / 41

A Cake-Eating Example: Direct Attack
Letting λ be the multiplier on the constraint and ϕ be the multiplier on the nonnegativity
constraint on WT+1. Largrange:

L =
∑T

t=1 β
t−1u(ct) + λ(W1 −

∑T
t=1 ct −WT+1) + ϕWT+1

The first order conditions:

βt−1u′(ct) = λ for t = 1, 2, ...,T

and λ = ϕ

The nonnegativity constraints on ct are ignored, as we assume limc→0u
′(c) → ∞.

Combining the equations:

u′(ct) = βu′(ct+1)

This is a necessary condition of optimality for any t, called Euler equation.
8 / 41

A Cake-Eating Example: Direct Attack

Euler equation:

u′(ct) = βu′(ct+1)

As long as the problem is finite, the Euler equation holds across all adjacent periods
implies that any finite deviations from a candidate solution that satisfies the Euler
equations will not increase utility.

Is this enough? Not quite. Imagine a candidate solution that satisfies the Euler equations
but has the property that WT > cT so that there is cake left over.

The Euler equation is necessary but not sufficient. Need WT+1 = 0. This constraint is
binding because λ = ϕ > 0.

9 / 41

A Cake-Eating Example: Direct Attack

The nonnegativity constraint serves two important purposes.

First, in the absence of WT+1 ≥ 0, the agent would want to set WT+1 = −∞.

Second, the fact that the constraint is binding in the optimal solution guarantees that
cake does not remain after period T.

The problem is pinned down by an initial condition W1 is given and a terminal condition
WT+1 = 0 and the set of T-1 Euler equations.

10 / 41

A Cake-Eating Example: Direct Attack

The solution to this problem be denoted by VT (W1), where T is the horizon of the
problem and W1 is the initial size of the cake.

VT (W1) represents the maximal utility flow from a T-period problem given a size W1

cake. We call this a value function.

11 / 41

A Cake-Eating Example: Dynamic Programming
Approach
Suppose we change the problem slightly: add a period 0 and give an initial cake of size
W0.

By adding a period 0 to our original problem, we can take advantage of the information
provided in VT (W1).

maxc0u(c0) + βVT (W1)
where

W1 = W0 − c0, W0 given

Instead of choosing a sequence of consumption, we just find c0. Then W1 is determined
and the value of the problem is given by VT (W1). This is a recursive formulation.

12 / 41

A Cake-Eating Example: Dynamic Programming
Approach

For the purposes of the dynamic programming problem, it does not matter how the cake
will be consumed after the initial period.

All that is important is the agent will be acting optimally and thus generating utility given
by VT (W1).

This is the principle of optimality, due to Richard Bellman.

13 / 41

A Cake-Eating Example: Dynamic Programming
Approach

The first order condition is given by

u′(c0) = βV
′
T (W1)

The marginal gain from reducing consumption a little in period 0 is summarized by the
derivative of the value function.

We know V ′
T (W1) = u′(c1) = βtu′(ct + 1), for t = 1, 2, ...,T − 1

Yields, u′(ct) = βu′(ct+1), for t = 0, 1, 2, ...,T − 1. A familiar Euler equation.

14 / 41

Some extensions of the cake-eating problem:
Infinite Horizon

max{ct}∞1 ,{Wt}∞2
∑∞

t=1 β
tu(ct)

s.t. Wt+1 = Wt − ct for t = 1, 2, ...

In specifying this as a dynamic programming problem, we write

V (W) = maxc∈[0,W]u(c) + βV (W − c) for all W

V (W) is the value of the infinite horizon problem starting with a cake of size W.

15 / 41

Some extensions of the cake-eating problem:
Infinite Horizon

V (W) = maxc∈[0,W]u(c) + βV (W − c) for all W

The STATE VARIABLE is the size of the cake W.

The CONTROL VARIABLE is the variable being chosen.

The dependence of the state tomorrow on the state today and the control today, given by
W ′ = W − c is called the TRANSITION EQUATION.

16 / 41

Some extensions of the cake-eating problem:
Infinite Horizon
Alternatively, we can specify the problem so that instead of choosing today’s consumption
we choose tomorrow’s state:

V (W) = maxW ′∈[0,W]u(W −W ′) + βV (W ′) for all W

This expression is known as a functional equation, called BELLMAN EQUATION.

The unknown in the Bellman equation is the value function itself: the idea is to find a
function V(W) that satisfies this condition for all W.

We can express all relations without an indication of time. This is the essence of
stationarity.

17 / 41

Some extensions of the cake-eating problem:
Infinite Horizon
The next part of this lecture addresses the question of whether there exists a value
function that satisfies the Bellman equation. For now, we assume that a solution exists.

The first order condition is u′(c) = βV ′(W ′)

The Benveniste-Scheinkman (BS) condition is V ′(W) = u′(c)

Combine the two, get Euler equation, u′(c) = βu′(c ′)

The link from consumption and the next period’s cake to the size of the cake is called
policy function:

c = ϕ(W),W ′ = ψ(W) for all W

18 / 41

Some extensions of the cake-eating problem: Taste
Shocks

A convenient feature of the dynamic programming problem is the ease with which
uncertainty can be introduced.

Suppose that utility over consumption is given by, εu(c)

where ε is a random variable with ε ∈ {εh, εl} and both of them are greater than zero.

We assume that the taste shock follows a first-order Markov process, which means that
the probability that a particular realization of ε occurs in the current period depends
ONLY on the value of ε in the previous period.

Denote, πlh = Prob(ε′ = εh|ε = εl). And Π with elements of πij is called transition
matrix.

19 / 41

Some extensions of the cake-eating problem: Taste
Shocks

The Bellman equation is written:

V (W , ε) = maxW ′∈[0,W]εu(W −W ′) + βEε′|εV (W ′, ε′) for all (W , ε)

The first order condition is: εu′(W −W ′) = βEε′|εV1(W
′, ε′) for all (W , ε)

The Benveniste-Scheinkman (BS) condition is V1(W , ε) = εu′(W −W ′)

Combine the two, get Euler equation, εu′(W −W ′) = βEε′|ε[ε
′u′(W ′ −W ′′)]

20 / 41

Some extensions of the cake-eating problem:
Discrete Choice
To illustrate the flexibility of the dynamic programming approach, we show a discrete
choice problem.

Suppose that the cake must be eaten in one period as a whole. And we modify the
transition equation to allow the cake to depreciate at rate ρ. An optimal stopping
problem.

Given the current taste shock, ε, then

V E (W , ε) = εu(W)
and

VN(W , ε) = βEε′|εV (ρW , ε′)
where

V (W , ε) = max(V E (W , ε),VN(W , ε)) for all (W , ε)
21 / 41

Some extensions of the cake-eating problem:
Discrete Choice

V E (W , ε) = εu(W)
and

VN(W , ε) = βEε′|εV (ρW , ε′)
where

V (W , ε) = max(V E (W , ε),VN(W , ε)) for all (W , ε)

εu(W) is the direct utility flow from eating the cake. Once the cake is eaten, the problem
has ended. So V E (W , ε) is just a one-period return.

If the agent waits, then in the next period the cake is of size ρW .

The agent needs to make decision between these two discrete choices.
22 / 41

General Formulation: Nonstochastic Case

A payoff function for period t given by σ̂(st , ct)

where, st is the state vector and ct is the control vector.

The transition equation is st+1 = τ(st , ct).

NOTE: The state vector completely summarizes all of the information from the past that
is needed to make a forward-looking decision.

We assume c ∈ C and s ∈ S and σ̂(s, c) is bounded for (s, c) ∈ S × C .

Two properties: stationarity (not depending on time) and discounting (0 < β < 1).

23 / 41

General Formulation: Nonstochastic Case

The Bellman equation:

V (s) = maxc∈C(s)σ̂(s, c) + βV (s ′) for all s ∈ S .

where, s ′ = τ(s, c).

Alternatively,

V (s) = maxs′∈Γ(s)σ(s, s
′) + βV (s ′) for all s ∈ S .

We need to find the value function that satisfies the Bellman equation.

24 / 41

General Formulation: Nonstochastic Case

Theorem (1)

Assume that σ(s, s ′) is real-valued, continuous, and bounded, 0 < β < 1, and that the
constraint set, Γ(s), is nonempty, compact and continuous. Then there exists a unique
value function V (s) that solves the Bellman equation.

An intuitive sketch, we define an operator:

T (W)(s) = maxs′∈Γ(s)σ(s, s
′) + βW (s ′) for all s ∈ S .

We take a guess on the value function and produce another value function, T (W)(s).
The fixed point, V (s) = T (V)(s), of the mapping is a solution.

We need to show the T (W) is a contraction. Need to show monotonicity and discounting.
25 / 41

General Formulation: Nonstochastic Case

Monotonicity: if W (s) ≥ Q(s) for all s ∈ S , then T (W)(s) ≥ T (Q)(s) for all s ∈ S .

Let ϕQ(s) be the policy function obtained from

maxs′∈Γ(s)σ(s, s
′) + βQ(s ′) for all s ∈ S .

Then,

T (W)(s) = maxs′∈Γ(s)σ(s, s
′) + βW (s ′) ≥ σ(s, ϕQ(s)) + βW (ϕQ(s)) ≥

σ(s, ϕQ(s)) + βQ(ϕQ(s)) = T (Q)(s) for all s ∈ S .

26 / 41

General Formulation: Nonstochastic Case

Discounting: adding a constant to W leads T(W) to increase by less than this constant.

We have

T (W + k)(s) = maxs∈Γ(s)σ(s, s
′) + β[W (s ′) + k] = T (W)(s) + βk < T (W)(s) + k for

all s ∈ S .

Since we assume that the discount factor is less than 1.

27 / 41

General Formulation: Nonstochastic Case

The fact that T(W) is contraction allows us to take advantage of the contraction
mapping theorem.

This theorem implies that there is unique fixed point and this fixed point can be reached
by an iteration process using an arbitrary initial condition (value function iteration).

Guess V0(s) for all s ∈ S , then V1 = T (V0). If V1 = V0 for all s ∈ S , we have the
solution. Else, V2 = T (V1), and continue iterating until T (V) = V .

Assignment: suppose u(c) = log(c), perform the value function iteration of our cake
eating problem using any computer language.

28 / 41

General Formulation: Nonstochastic Case

Theorem (2)

Assume that σ(s, s ′) is real-valued, continuous, CONCAVE, and bounded, 0 < β < 1,
that S is convex subset of Rk , and that the constraint set, Γ(s), is nonempty, compact
and continuous. Then the unique solution is stricly concave. Further the policy function
is a continuous, single-valued function.

The proof of the theorem relies on showing that strict concavity is preserved by T (V).
Given that σ(s, s ′) is concave, then the initial guess can be:

V0(s) = maxs′∈Γ(s)σ(s, s
′)

V0 is strictly concave. Since T (V) preserves this property, the solution to the Bellman
equation is strictly concave.

29 / 41

General Formulation: Stochastic Dynamic
Programming
Let ε ∈ Φ, represent the vector of shocks and it is a first order Markov process.

The Bellman equation is

V (s, ε) = maxs∈Γ(s,ε)σ(s, s
′, ε) + βEε′|εV (s ′, ε′) for all (s, ε).

Theorem (3)

Assume that σ(s, s ′, ε) is real-valued, continuous, concave, and bounded, 0 < β < 1, and
that the constraint set, Γ(s, ε), is nonempty, compact and convex. Then,

1. there exists a unique value function V (s, ε) that solves the above Bellman equation.
2. there exists a stationary policy function, ϕ(s, ε).

With β < 1, discounting holds and monotonicity holds as before. (An application of
Blackwell’s theorem.) 30 / 41

Numerical Solution

A stochastic cake-eating problem:

V (W , y) = max0≤c≤W+yu(c) + βEy ′|yV (W ′, y ′)

for all (W , y), with
W ′ = R(W − c + y)

Assume y is iid and define: X = W + y , the problem can be written as:

V (X) = max0≤c≤Xu(c) + βEV (X ′)

for all X , with
X ′ = R(X − c) + y ′

Note: if y is serially correlated, then it has to be a state variable.

31 / 41

Value Function Iteration

• Choosing a functional form for the utility function.

• Discretizing the state and control variable.

• Building a computer code to perform value function iteration.

• Evaluating the value and the policy function.

32 / 41

Value Function Iteration

• Choosing a functional form for the utility function.

u(c) =
c1−γ

1− γ

33 / 41

Value Function Iteration

• Discretizing the state and control variable as the computer cannot handle a
continuous state space.

• For simplicity, assume the cake endowment y can take two values: yL and yH with
probability πL and πH , respectively.

• The space for X : Ψs = {X is}nsis=1 ∈ [X̄L, X̄H]

• The space for C : Ψc = {C ic}ncic=1 ∈ [X̄L, X̄H]

• The Bellman equation can be written as:

V (X) = max0≤c≤Xu(c) + β
∑
i=L,H

πiV (R(X − c) + yi)

for all X .

34 / 41

Value Function Iteration

• Building a computer code to perform value function iteration.

• Starting with an initial guess V0(X), V0(X) can be any function, we compute a
sequence of value functions Vj(X):

Vj+1(X) = T (Vj(X)) = max0≤c≤Xu(c) + β
∑
i=L,H

πiVj(R(X − c) + yi)

• The iterations are stopped when |Vj+1(X)− Vj(X)| < ε for all is , where ε is a small
number.

35 / 41

Value Function Iteration

• Evaluating the value and the policy function.

• Once the value function iteration piece of the program is completed, the value
function can be used to find the policy function, c = c(X).

• This is done by collecting all the optimal consumption values c i
∗
c for every value of

X is .

• Note: we only know the value function and policy function at the grids {X is}nsis=1 and

{C ic}ncic=1.

36 / 41

Value Function Iteration

37 / 41

Value Function Iteration: Value Function

38 / 41

Value Function Iteration: Policy Function

39 / 41

Numerical Solution

There are many other numerical methods, for example policy function iteration,
projection method, endogenous grid method, etc.

40 / 41

Conclusion

This lecture has provided a theoretical structure for the dynamic optimization problems
that can be used widely in economic analysis.

Slides can be found at www.rongli.cc

41 / 41

	First Section

