金融学 2023 年秋 • 时间序列

第10讲:时间序列的预测

授课人: 刘 岩

武汉大学经管学院金融系

2023年11月13日

本讲内容

- 条件期望与最优预测
- ② 线性预测
- ③ 时间序列的预测

条件期望与最优预测

本节内容

- 条件期望与最优预测
- ② 线性预测
- ③ 时间序列的预测

条件概率和条件期望

- 给定随机变量 X,Y 以及其联合密度函数 f(x,y)
- 给定 X = x, Y 的条件概率密度可表示为

$$f(y|x) = \underbrace{\frac{\Pr(X = x, Y = y)}{\Pr(X = x)}}_{\text{FFM } \text{\#k}} = \frac{f(x, y)}{\int f(x, y) dy}$$

- $\mathbb{E}(Y|X=x) = \int yf(y|x)dy$ 称为 Y 在 X 上的条件期望
- 记为 E(Y|X); 可看做 X 的函数

条件期望与最优预测

条件期望的性质

- 全期望律 (law of total expectation): $\mathbb{E}Y = \mathbb{E}[\mathbb{E}(Y|X)]$
- 若 X,Y 相互独立,则 E(Y|X) = EY
- 给定函数 $g(\cdot)$, $\mathbb{E}[g(X)Y|X] = g(X)\mathbb{E}(Y|X)$
- $\mathbb{E}(Y|X)$ 是 X 对 Y 的最小均方预测函数: $\mathbb{E}(Y|X)$ 是最小化问题

$$\min_{g(\cdot)} \mathbb{E}[Y - g(X)]^2$$

的(唯一)解 \Rightarrow 均方误差意义下,Y的最优预测为 $\mathbb{E}(Y|X)$

• 若 Z = g(X) 且 $g(\cdot)$ 是严格单调函数,则

$$\mathbb{E}(Y|Z) = \mathbb{E}[Y|g(X)] = \mathbb{E}(Y|X)$$

最优预测推导

• 对于任意的函数 $f(\cdot)$, f(X) 对 Y 的均方预测误差可写为

$$\mathbb{E}[Y - f(X)]^{2} = \mathbb{E}[Y - \mathbb{E}(Y|X) + \mathbb{E}(Y|X) - f(X)]^{2}$$

$$= \mathbb{E}[Y - \mathbb{E}(Y|X)]^{2} + 2\mathbb{E}[(Y - \mathbb{E}(Y|X))(\mathbb{E}(Y|X) - f(X))]$$

$$+ \mathbb{E}[\mathbb{E}(Y|X) - f(X)]^{2}$$

$$= \mathbb{E}[Y - \mathbb{E}(Y|X)]^{2} + 2\mathbb{E}[\mathbb{E}[(Y - \mathbb{E}(Y|X))(\mathbb{E}(Y|X) - f(X))|X]]$$

$$= (\mathbb{E}(Y|X) - f(X))^{2}$$

$$= \mathbb{E}[Y - \mathbb{E}(Y|X)]^{2} + \mathbb{E}[\mathbb{E}(Y|X) - f(X)]^{2}$$

• 故对任意 $f(\cdot)$, $\mathbb{E}[Y - f(X)]^2 \ge \mathbb{E}[Y - \mathbb{E}(Y|X)]^2$

刘岩。武大金融

第10讲:时间序列的预测

第6/15页

联合正态下的条件期望

- ◆ 给定 X,Y 服从二元正态分布
- 定义 $Z = (Y \mathbb{E}Y) \frac{\text{cov}(X,Y)}{\text{var}(X)}(X \mathbb{E}X);$ 则有 Z 为正态分布,且 $\mathbb{E}Z = 0$
- 可验证 $cov(Z,X) = \mathbb{E}ZX = 0$,故 Z,X 互相独立; 进一步的, Z,g(X) 相互独立, 故 $\mathbb{E}Zg(X) = \mathbb{E}Z\mathbb{E}g(X) = 0$
- 由此可证明 $Y Z = \mathbb{E}Y + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X \mathbb{E}X)$ 是 X 对 Y 的最小均方预测,故

$$\mathbb{E}(Y|X) = Y - Z = \mathbb{E}Y + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - \mathbb{E}X), \quad 进一步有$$

$$\text{var}(Y|X) = \mathbb{E}[(Y - \mathbb{E}(Y|X))^2|X] = \text{var}(Y) - \frac{[\text{cov}(X,Y)]^2}{\text{var}(X)}, \quad 是一个常数$$

本节内容

- 条件期望与最优预测
- ② 线性预测
- ③ 时间序列的预测

线性预测

- 给定随机变量 Y 及 K-维随机向量 X (可包含常数项),定义 X 对 Y 的<u>线性预测</u> (linear prediction) 为 $\hat{Y} = b^{\mathsf{T}}X$, $b \in \mathbb{R}^K$,对应的 $Y \hat{Y}$ 称为预测误差 (prediction error)
- 定义<u>最优均方</u> (optimal mean square) 线性预测为使 $\mathbb{E}[Y \hat{Y}]^2$ 最小的线性预测 $\hat{b}^{\mathsf{T}}X$:

$$\hat{b} = \underset{b}{\operatorname{argmin}} \mathbb{E}[Y - b^{\mathsf{T}}X]^2$$

- 类似于 OLS, 上述 $\hat{\boldsymbol{b}}$ 的取值需满足 $\mathbb{E}[(Y \hat{\boldsymbol{b}}^{\mathsf{T}}X)X^{\mathsf{T}}] = \boldsymbol{0}^{\mathsf{T}}$, 故 $\hat{\boldsymbol{b}} = (\mathbb{E}[XX^{\mathsf{T}}])^{-1}\mathbb{E}[XY]$
- 最优线性预测记为 L(Y|X), 可直观理解为 Y 对 X 的投影

正态条件下的线性预测与最优预测

- 给定 Y, X 为 2-元正态分布 r.v., 期望为 0
- X 对 Y 的最优线性预测系数 b 满足

$$\hat{b} = \frac{\mathbb{E}[XY]}{\mathbb{E}X^2} = \frac{\text{cov}(X,Y)}{\text{var}(X)}$$

最优线性预测 $L(Y|X) = \frac{\text{cov}(X,Y)}{\text{var}(X)}X$

• 此时 X 对 Y 的最优(均方)预测与最优(均方)线性预测相等

$$\mathbb{E}[Y|X] = L(Y|X)$$

本节内容

- 条件期望与最优预测
- 2 线性预测
- ③ 时间序列的预测

时间序列的预测

• 给定时间序列 $\{Y_t\}$, 可以考虑用 t 及之前的观测值, 对 Y_{t+s} 进行线性预测

$$\hat{Y}_{t+s|t} = L(Y_{t+s}|Y_t, Y_{t-1}, \ldots), \quad s \ge 1$$

• 更一般的,给定时间序列 $\{Y_t\}$ 与 $\{X_t\}$,其中 $X_t \in \mathbb{R}^K$,可以考虑用 t 及之前的观测值 $\{X_{t-i}\}_{i\geq 0}$ 对 Y_{t+s} 进行线性预测

$$\hat{Y}_{t+s|t} = L(Y_{t+s}|X_t, X_{t-1}, \ldots), \quad s \ge 1$$

• 最优线性预测的具体形式,即系数向量 \hat{b} 的确定,依赖于具体模型

AR(1) 的预测

- 给定平稳 AR(1) 过程 $X_{t+1} = \mu + \phi X_t + \varepsilon_{t+1}$, $|\phi| < 1$, $\{\varepsilon_t\}$ 为白噪声
- X_{t+1} 在 t 的最优线性预测 $\hat{X}_{t+1|t} = \mu + \phi X_t$
 - 直接可验证 $\mathbb{E}[(X_{t+1} \hat{X}_{t+1|t})X_t] = 0$
- X_{t+2} 在 t 的最优线性预测 $\hat{X}_{t+2|t} = \mu + \phi \mu + \phi^2 X_t$
 - 由 AR 迭代可得: $X_{t+2} = \mu + \phi \mu + \phi^2 X_t + \phi \varepsilon_{t+1} + \varepsilon_{t+2}$
 - 由此可验证 $\mathbb{E}[(X_{t+2} \hat{X}_{t+2|t})X_t] = 0$
- 另一角度, $\hat{X}_{t+2|t}$ 可看做 $\hat{X}_{t+2|t+1}$ 在 t 的线性预测
 - $\hat{X}_{t+2|t+1} = \mu + \phi X_{t+1}$
 - $\hat{X}_{t+2|t} = \mu + \phi X_{t+1|t} = \mu + \phi \mu + \phi^2 X_t$

时间序列的预测

AR(1) 预测的渐近性质

可验证, ∀s ≥ 1 有

$$\hat{X}_{t+s|t} = \mu \sum_{r=0}^{s-1} \phi^r + \phi^s X_t$$

• 由此可知,

$$\lim_{s \to \infty} \hat{X}_{t+s|t} = \frac{\mu}{1 - \phi} = \mathbb{E}X_t$$

即 X_{t+s} 的长期(最优)线性预测值收敛到其无条件期望

• 进一步计算可知

$$\lim_{s \to \infty} \mathbb{E}[X_{t+s} - \hat{X}_{t+s|t}]^2 = \frac{\sigma_{\varepsilon}^2}{1 - \phi^2} = \operatorname{var}(X_t)$$

即 Xt+s 的长期均方预测误差收敛到其无条件方差

三点注释

- ullet 对一般的 $\mathrm{AR}(p)$ 过程,同样可以利用"递归"预测的方式,计算 $\hat{X}_{t+s|t}$
 - 先计算 $\hat{X}_{t+s|t+s-1}$, 再对结果中出现的 X_{t+s-1} 计算 $\hat{X}_{t+s-1|t+s-2}$, 以此递推
- 对 AR(p) 过程而言, 若 $\{\varepsilon_t\}$ 相互独立, 则有

$$\hat{X}_{t+s|t} = L(X_{t+s}|X_t, X_{t-1}, \dots) = \mathbb{E}[X_{t+s}|X_t, X_{t-1}, \dots] = \mathbb{E}_t X_{t+s}$$

- MA 过程及 ARMA 过程同样可以进行类似的预测
 - MA 的预测可借助对观测值 X_t 的自回归近似所得到的近似 $\hat{\epsilon}_t$ 来完成