2020 秋季本科时间序列

第2次作业

提交日期: 10月22日

- 1. 考虑课件 5 第 5 页示例(略微修正) $X_t = \cos(\pi t + U)$,其中 $U \sim \mathfrak{U}([-\pi,\pi])$, $t \in \mathbb{Z}$ 。
 - (a) 请计算 $\sigma_x^2(k)$, $k \in \mathbb{N}$ 。
 - (b) 请使用 R 或者 Python 编程,按照题中分布随机生成一个 U,并生成 $t=1,\ldots,1000$ 的样本值 $\{X_t\}_{t=1}^{1000}$ 。使用 ts 宏包的 ACF 函数,计算 $\{X_t\}$ 的样本自协方差函数,并与理论值进行对比。
- 2. 给定 iid 样本 $\{X_i\}_{i=1}^N$, 期望为 $\mathbb{E}X_i = \mu$, 方差为 $\operatorname{var}(X_i) = \sigma^2$, 请说明样本方差

$$\hat{\sigma}_N^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \hat{\mu}_N)^2$$

的期望 $\mathbb{E}\hat{\sigma}_N^2 = \sigma$,其中 $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N X_i$ 为样本均值。提示: 可以先将上述求和项按照 $(X_i - \mu + \mu - \hat{\mu}_N)^2$ 进行拆分,并分别求期望。

- 3. 考虑 AR(1) 过程 $X_t = \rho X_{t-1} + \varepsilon_t$, $|\rho| < 1$, 其中 ε_t 为 iid 标准正态分布白噪声序列。
 - (a) 给定 $X_0 = a \in \mathbb{R}$ 为任意实数,请确定 X_t 的分布函数 $F_t(x)$, $t \ge 1$ 。
 - (b) 求出上述分布函数 $F_t(x)$ 当 $t \to \infty$ 时的极限分布 $F_{\infty}(x)$,并验证 $F_{\infty}(x)$ 为上述 AR(1) 过程的平稳分布。
 - (c) 固定 $\rho = 0.8$ 。用 R 或者 Python 编程,从均匀分布 U([0,1]) 中抽取 1000 次 X_0^i 的 取值, $i = 1, \ldots, 1000$ 。对每个 X_0^i ,再抽取 100 个 $\{\varepsilon_t^i\}_{t=1}^{100}$,并计算该组 AR(1) 样本 $\{X_t^i\}_{t=0}^{100}$ 。分别绘制 $\{X_{10k}^i\}_{i=1}^{1000}$ 的样本直方图, $k = 0, 1, \ldots, 10$ 。比较这一组样本分布 与 $\rho = 0.8$ 时过程平稳分布 $F_{\infty}(x)$ 的差异。