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Abstract: The scale of knowledge is growing rapidly in the big data environment, and traditional knowledge or-
ganization and services have faced the dilemma of semantic inaccuracy and untimeliness. From a knowledge fusion 
perspective—combining the precise semantic superiority of traditional ontology with the large-scale graph pro-
cessing power and the predicate attribute expression ability of property graph—this paper presents an ontology and 
property graph fusion framework (OPGFF). The fusion process is divided into content layer fusion and constraint 
layer fusion. The result of the fusion, that is, the knowledge representation model is called knowledge big graph. In 
addition, this paper applies the knowledge big graph model to the ownership network in the China’s financial field 
and builds a financial ownership knowledge big graph. Furthermore, this paper designs and implements six con-
sistency inference algorithms for finding contradictory data and filling in missing data in the financial ownership 
knowledge big graph, five of which are completely domain agnostic. The correctness and validity of the algorithms 
have been experimentally verified with actual data. The fusion OPGFF framework and the implementation method of the knowledge big graph 
could provide technical reference for big data knowledge organization and services. 
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1.0 Introduction 
 

Knowledge organization is a process for conceptual repre-
sentation of knowledge domains as an activity (Lígia et al. 
2017; Bragato et al. 2019). According to Hjørland (2008), 
knowledge representation processes and knowledge repre-
sentation systems can be used to characterize knowledge or-
ganization. Ontology, a typical method of traditional know-
ledge representation and knowledge organization systems, 
has garnered long-term attention (Stuart 2016). Its develop-
ment context roughly spans from the semantic network to 
the ontology language represented by RDFS/OWL and 
then to the development of linked data (Bizer et al. 2009), 
which also accumulates many ontology knowledge bases. 
Knowledge graphs based on the property graph model have 
made great achievements in academia and industry in recent 
years, such as recommendation systems based on knowledge 
graph (Constantinov et al. 2016; Silva et al. 2010), the bio-
informatics data management platform Bio4j (Pareja-Tobes 
et al. 2015), Facebook’s OpenGraph (Ching et al. 2015), 
and Twitter’s FlockDB (Hecht and Jablonski 2011). Know-
ledge graphs based on the property graph model are widely 
used to represent large amounts of heterogeneous know-
ledge from disparate sources. 

The ontology model and property graph model are in-
compatible with each other, which directly hinders the con-
tinuity and inheritance of knowledge representation re-
search. The ontology model usually defines the concepts of 
“things” and complex semantic relationships between con-
cepts and can perform semantic reasoning. The model is 
generally expressed with the RDFS/OWL ontology lan-
guage. The property graph model refers to a directed graph 
composed of nodes with multiple attributes and edges with 
multiple attributes (Rodriguez and Neubauer 2010; Hartig 
2014; Tomaszuk and Dominik 2016). Different types of 
nodes and edges are identified by labels. On one hand, with 
the advent of the era of big data, traditional ontology is in-
creasingly difficult to adapt to the rapid expansion of the 
knowledge scale. Due to the NP problem, semantic reason-
ing takes too long and crosses boundaries, and query re-
sponses are getting slower and slower, making it more diffi-
cult to land in actual application scenarios. This widens the 
gap between the research of ontology theory and knowledge 
services in industry (Cui et al. 2016; Gong et al. 2018). On 
the other hand, the knowledge contradiction rate is high in 
knowledge graphs based on the property graph model with-

out semantic constraints and it is difficult to integrate do-
main knowledge from different experts using a property 
graph model (Miller 2013). 

To effectively cope with the dual challenges of volume 
and semantic complexity brought by big data, this paper 
fuses ontology and property graph at the level of knowledge 
representation, and refers to the fused knowledge represen-
tation model as the “knowledge big graph.” Finally, seman-
tic consistent reasoning is performed to verify the effective-
ness of the knowledge big graph. 
 
2.0 Related research 
 
The conceptual model of ontology is generally represented 
by the triple, which is significantly different from the stor-
age model of ontology—plain text storage and variants of 
relational database storage. The difference between the con-
ceptual model and the storage model not only causes low 
query efficiency but also brings obstruction to the release 
and utilization of the ontology. The graph database used to 
store the property graph adopts native graph processing and 
native graph storage technology. The resulting physical stor-
age model formed is consistent with the conceptual model 
of a property graph, which can effectively match the charac-
teristics of local data association in the big data environ-
ment, narrow the range of data traversal during data query 
and analysis, and improve the efficiency of formalization, 
storage, and utilization of large-scale knowledge. Therefore, 
many studies have begun to focus on how to transfer an on-
tology into a graph database, which are mainly divided into 
RDF level transformation and RDFS/OWL level transfor-
mation with complex semantic relationships. 
 
2.1 RDF level transformation research 
 
The ontology model is based on RDF triples and consists of 
more semantic vocabularies and primitives. Therefore, the 
ontology described by the mainstream language RDFS/ 
OWL recommended by the W3C standard is also an RDF tri-
ple set, but the RDF triple set is not necessarily a standard on-
tology. The RDF triple form <subject, predict, object> natu-
rally corresponds to the basic structure <node1, edge, node2> 
of a property graph. Therefore, many scholars started from 
the corresponding structure, designed the rules of ontology 
to property graph conversion, and implemented graph data-
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base storage of ontologies. For example, Gong et al. (2018) 
treated the attribute values in the RDF directed graph as 
nodes in the property graph model and dumped the oil do-
main ontology into the Neo4j graph database. Drakopoulos 
et al. (2017) converted the RDF triples corresponding to the 
instance layer of the ontology into edges in the property 
graph, where object property name and datatype property 
name were used as edge labels. Tomaszuk and Dominik 
(2016) proposed an algorithm, YARS, that translates RDF 
graphs into attribute graphs and serializes them into graph da-
tabases. The RDF-level transformation research only retains 
the data content of the ontology, which essentially degener-
ates the ontology into a set of RDF triples and then trans-
forms it into a property graph model, losing the semantic con-
straints of the ontology itself. 
 
2.2 RDFS/OWL level conversion research 
 
Most of ontologies are described by the primitives provided 
by the RDFS/OWL ontology language, so some scholars 
mapped primitives in RDFS/OWL to the labels and attrib-
utes in the property graph model to represent the complex 
semantic relationship of the ontology. Krötzsch et al. (2016, 
2017) used attribute logic to represent the ontology seman-
tics in the property graph and explored the logical fit of the 
ontology into the property graph. Konno et al. (2017) con-
structed a two-layer property graph transformed from a re-
tail ontology. Pham et al. (2018) built a computer science 
domain knowledge base and compared the query efficiency 
of the ontology version to the property graph version. 

Related research mainly focused on the problem of 
dumping the ontology into a graph database at the physical 
level, rather than the fusion of the ontology and property 
graph at a higher level; that is, the semantic reasoning of the 
ontology and the predicate attribute of the property graph 
are not merged into a logical self-consistent whole. There-
fore, from the perspective of knowledge fusion, this paper 
explores the fusion of the ontology and the property graph 
at the level of knowledge representation and constructs a 
knowledge big graph with both ontological reasoning and 
predicate attribute representation capabilities. Application 
scenarios of Chinese financial ownership network is used to 
verify the feasibility and practical value of the knowledge big 
graph proposed in this paper. 
 
3.0 Knowledge fusion—the theoretical basis of 

knowledge big graph 
 
The core function of knowledge fusion can be summarized 
as extracting knowledge elements from heterogeneous know-
ledge resources, adopting methods such as transformation, 
reasoning, merging, reorganization, and integration to estab-
lish a unified knowledge model. New knowledge can be ob-

tained from the generated knowledge model to provide high-
quality knowledge services (Smirnov et al. 2015; Preece et al. 
2000). The ontology model can be regarded as knowledge A, 
and the property graph model can be regarded as knowledge 
B. Exploring the fusion of the ontology and the property 
graph is essential to establish the fusion logic of knowledge A 
and knowledge B. Therefore, it is possible to start from the 
conversion, merger, and reduction of knowledge elements 
and consider the mapping of the relationships among ele-
ments, that is, to investigate the integration of the ontology 
and the property graph from the perspective of knowledge fu-
sion to ensure the logical consistency and coordination of the 
two knowledge representations in the knowledge big graph 
and to obtain new knowledge from the fusion results. 

Ontology generally consists of a concept layer and an in-
stance layer. Its description logic is <TBox, ABox>, where 
TBox corresponds to the concept layer of the ontology and 
ABox corresponds to the instance layer of the ontology 
(Dutta et al. 2014). The specific composition is as follows: 
 

TBox: a finite set of axioms such as term inclusion re-
lationship C ⊑ D, term equivalent relationship C ≡ D, 
term mutual exclusion relationship C ⊓ D = ∅; 
ABox: a finite set of conceptual assertions C(a), role 
assertions R(a, b) , negative role assertions ¬R(a, b) , 
identity assertion statements a ≈ b , and negative as-
sertion statements a ≉ b. 

 
Property graph uses graph theory in mathematics as their 
logical basis, with a relatively simple structure, mainly con-
sisting of nodes and edges. The property graph can be rep-
resented by a quaternion <V, E, P, L>, and the correspond-
ing mapping functions <he, te, pv, pe, le, lv> are attached. The 
description of each structure is as follows: 
 

1.  V represents the set of nodes in the property graph; 
2.  E represents the set of edges in the property graph; 
3.  P represents the set of attributes in the property 

graph, generally represented by the key-value pair 
<attribute name, attribute value>;  

4.  L represents the set of labels in the property graph; 
5.  he represents the bijective function of E to the head 

node Vh; 
6.  te represents the bijective function of E to the tail 

node Vt; 
7.  pv represents the injective function of P to V; 
8. pe represents the injective function of P to E; 
9.  lv represents the injective function of L to V; 
10.  le represents the bijective function of L to E. 

 
In the above formal description, the bijective function rep-
resents a one-to-one mapping relationship, and the injective 
function generally represents a many-to-one mapping rela-
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tionship. In a property graph, a node can belong to multiple 
types at the same time, that is, it can possess multiple labels, 
so lv is an injective function. An edge only expresses a rela-
tionship; that is, there is only one label, so le is an injective 
function. 

The ontology model and the property graph model are 
heterogeneous in syntax and semantics. Through a know-
ledge fusion lens, the fusion of ontology and property graph 
is mainly divided into transformation fusion, recombination 
fusion, and mapping fusion. Transformation fusion refers to 
the syntax conversion that converts the grammatical format 
of heterogeneous knowledge resources to the same syntax 
type. For example, the primitives described by RDFS/OWL 
in an ontology are converted into attribute key-value pairs 
and labels in a property graph. Knowledge resources are also 
semantically heterogeneous, which brings the need to merge 
and fuse the same element parts in an ontology and a property 
graph at the granularity of the knowledge elements and re-
combine different parts. Mapping fusion refers to mapping 
the <TBox, ABox> structure of an ontology and the four-tu-
ple representation of a property graph to generate the skele-
ton of the knowledge big graph. 

Obtaining new knowledge is one of the goals of know-
ledge fusion, and it should also be the goal of fusing ontology 
and property graph. The way to get new knowledge for an 
ontology is ontology reasoning, and for a property graph, it is 
graph mining based on path traversal and query. We fuse the 
two methods of obtaining new knowledge to generate a new 
reasoning mode. The new mode of inference is not only the 

new knowledge obtained after the knowledge fusion but also 
the means to obtain the new knowledge from the knowledge 
big graph after fusing ontology and property graph. 
 
4.0  Ontology and property graph fusion  

framework—the logical realization of  
knowledge big graph 

 
The explicit semantics of structured data and knowledge ba-
ses are generally described by an explicit or implicit vocabu-
lary. The vocabulary is the data that describes the data, that 
is, metadata. Metadata describing the structure of the ontol-
ogy is called primitive in ontology. This paper maps main 
primitives in the traditional ontology language RDFS/ 
OWL recommended by the W3C into property graph 
model and develops the ontology and property graph fusion 
framework (OPGFF) as shown in Figure 1. 

The content layer fusion in OPGFF mainly involves 
combining the primitives of the TBox layer and the ABox 
layer in the ontology with the elements in the property 
graph model. The constraint layer fusion combines the con-
sistent reasoning of the ontology with the path traversal and 
predicate attribute of the property graph on the basis of the 
content layer fusion to realize the correctness of the know-
ledge and the derivation of new knowledge. A knowledge 
big graph is generated through the two-layer fusions, and 
the subsequent semantic query and semantic inference rules 
based on the knowledge big graph can be highly decoupled 
and completely domain agnostic. 

Explanation RDFS/OWL primitive mapped property graph element 

a concept or class owl:Class Node(:Class) 

role that associates one instance with another owl:ObjectProperty Node(:ObjectProperty) 

transitive role owl:TransitiveProperty Node(:TransitiveProperty) 

antisymmetric role owl: AsymmetricProperty Node(:AsymmetricProperty) 

role that associates instance with literal owl:DatatypeProperty Node(:DatatypeProperty) 

role-to-concept domain relationship  rdfs:domain Edge(:Domain) 

role-to-concept range relationship rdfs:range Edge(:Range) 

role-to-role inverse relationship owl:inverseOf Edge(:InverseOf) 

role-to-role equivalent relationship owl:equivalentProperty Edge(:EquivalentProperty) 

role-to-role disjoint relationship owl:disjointProperty Edge(:DisjointProperty) 

role-to-role sub-property relationship rdfs:subPropertyOf Edge(:SubPropertyOf) 

concept-to-concept subclassOf relationship rdfs:subClassOf Edge(:SubClassOf) 

concept-to-concept equivalent relationship owl:equivalentClass Edge(:EquivalentClass) 

concept-to-concept disjoint relationship owl:disjointWith Edge(:DisjointWith) 

Table 1. Terminology mapping in the TBox layer fusion 
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4.1 Content layer fusion 
 
Content layer fusion refers to redefining the TBox layer and 
the ABox layer of an ontology in a property graph model. The 
result of the fusion corresponds to the schema layer and in-
stance layer of the knowledge big graph so that the knowledge 
big graph can express the basic semantics of the ontology. 
 
4.1.1 TBox layer fusion 
 
We represent the semantics of the ontology’s TBox layer by 
converting the concepts, roles, and relationships between 
them into nodes and edges in the property graph as shown 
in Table 1. First, the concepts and roles in the ontology are 
converted into nodes of the property graph so that the basic 
skeletal elements corresponding to the ontology TBox layer 
are constructed in the knowledge big graph. The transfor-
mation fusion formula is shown in Box 1a. 
 ClassNodes(PG) is the set of nodes representing all concepts 
of the ontology in the knowledge big graph, and RoleNodes(PG) is the set of nodes representing all roles of 
the ontology in the knowledge big graph. ( :”Class”、: RoleType、: ”DatatypeProperty”) are used as the labels of 
nodes in the knowledge big graph, and ( “cname”、 ”ename”、”pname”) are used as the properties of nodes in 
the knowledge big graph. The meaning of  tco ∈Classes(Ontology)  is that the symbol “tco” represents the 
conceptual elements of the ontology. 

The edges in the property graph model are used to repre-
sent the vertical and horizontal relationships between the ele-

ments forming the skeleton structure of the knowledge big 
graph. The transformation fusion formula is shown in Box 1b.  TEdges(PG) is a set of edges representing all the relation-
ships between concepts and concepts, roles and roles, and 
concepts and roles. Finally, the bijective functions he and te 
are used to associate the above nodes and edges together to 
form specific semantics. The recombination fusion formula 
is shown in Box 2. 

Through the various combinations of these four fusion 
equations (1)~(4), the complex semantic relationships 
formed between the concepts and roles in the ontology 
TBox layer can be represented in the knowledge big graph. 
For example, he(tr(:Domain))=tp, te(tr(:Domain))=tc1, 
he(tr(:Range))=tp, te(tr(:Range))=tc2 jointly express the se-
mantics of role tp, that is, role tp associates an instance of 
concept tc1 with an instance of concept tc2. For example,   Person(: Class) :ୈ୭୫ୟ୧୬ር⎯⎯⎯⎯ሲ AuthorOf(: ObjectProperty):ୖୟ୬ୣሱ⎯⎯⎯ሮBook(: Class)  
expresses the authorOf role relationship between the in-
stance belonging to Person and the instance belonging to 
Book.  
 
4.1.2 A Box layer fusion 
 
We map the concept assertions and role assertions in the on-
tology to the nodes, edges, and attributes of the nodes in the 
knowledge big graph and connect the corresponding edges 
and nodes to represent the semantic relationships among in-
stance objects and semantic constraints of the TBox layer on 
the ABox layer of the ontology. The mapping fusion for-
mula is shown in Box 3. 

Box 3 InNodes(PG) = ൜ni ∶ tc. ”cname” < tp. ”pname” = specialValue, … > ฬtc ∈ ClassNodes(PG),tp ∈ RoleNodes(PG) ൠ                                         (5) AEdges(PG) = ሼar ∶ tp. ”ename”  |tp ∈ RoleNodes(PG)ሽ.                                                                                                               (6)                 hୣ(ar) = ni; tୣ(ar) = ni,where  ni ∈ InNodes(PG), ar ∈ AEdges(PG).                                                                             (7) 

Box 2 hୣ(tr) = tp; (tr) = tp; hୣ(tr) = tc;  tୣ(tr) = tc, where  tr ∈ TEdges(PG), tp ∈ RoleNodes(PG), tc ∈ ClassNodes(PG).     (4)    

Box 1a ClassNodes(PG) = ሼtc ∶ ”Class” < “cname”=tco.ConceptName > | tco ∈ Classes(Ontology)ሽ.                                   (1) RoleNodes(PG) = ൜tp ∶ RoleType < “ename”=tpo.RoleName > ฬ tpo ∈ Roles(Ontology),RoleType ≠ DatatypePropertyൠ∪               ሼtp ∶ DatatypeProperty < “pname”=tpo.RoleName > |tpo ∈ Roles(Ontology)ሽ.         (2) 
Box 1b TEdges(PG) = ሼtr ∶ RelationName |RelationName ∈ OntologyRelሽ, where  OntologyRel= ሼSubClassOf, SubPropertyOf, DisjointWith, Domain, Rangeሽ.                                                             (3) 
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InNodes(PG) is the set of nodes representing all the concept 
assertions of the ontology in the knowledge big 
graph,  tc. ”cname”  represents the specific name of a con-
cept; AEdges(PG)is the set of edges representing all the non-
DatatypeProperty role assertions of the ontology in the 
knowledge big graph. (tp. ”ename, ” tp. ”pname”) represents 
the specific name of a role; the bijective functions he and te 
associate nodes with edges. The result of the fusion corre-
sponds to the instance layer of the knowledge big graph as 
shown in Figure 2. 

Using the above mapping fusion formula (5)~(7), the se-
mantic constraints of the TBox layer on the ABox layer in 
the ontology can be mapped to the semantic constraints of 
the schema layer on the instance layer in the knowledge big 
graph. All concept names in the ontology are used as labels 
of nodes in the instance layer of the knowledge big graph. 
Thus, the association between the schema layer and the in-
stance layer is naturally established in the knowledge big 
graph. Although additional edges can be used to connect 
the instance layer and the schema layer in knowledge big 
graph, it will likely cause tens of millions of nodes in the in-

 

Figure 2. ABox layer fusion. 
 

 

Figure 1. Ontology and property graph fusion framework(OPGFF). 
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stance layer to be connected with one node in the schema 
layer, making the structure of the entire knowledge big 
graph sparse and unbalanced, which is not conducive to a 
rapid response to the query. It also does not take advantage 
of the characteristics of the native storage and the adjacency 
query of the property graph model and increases storage 
and query costs. We use the attribute value of the “cname” 
attribute of the concept node as the label of instance nodes 
and do not add extra edges to the entire knowledge big 
graph so that when querying an instance of a concept node, 
only the subgraph is traversed whose node label is the name 
of the concept node without having to traverse the entire 
knowledge big graph. 
 
4.1.3 Fusion of predicate attribute and edge attribute 
 
The attributes of the predicates cannot be directly expressed 
in RDF triples. As a result, the ABox layer of the ontology 
based on the RDF triples cannot directly represent the at-
tributes of the relationship. For example, <Jack, marry, 
Rose> can indicate the marriage relationship between Jack 
and Rose but cannot directly indicate when Jack and Rose 
married. The mainstream solution is to treat the marriage 

relationship as an intermediate entity, such as: <Marriage, 
bridegroom, Jack>, <Marriage, bride, Rose>, <Marriage, 
date, 1990>. However, this solution increases the cognitive 
complexity, the storage costs of the computer, and the com-
plexity of the semantic query. In contrast, we can directly set 
key-value pairs for edges to represent the attributes of a rela-
tionship in a property graph. By combining the predicate 
attributes of the ontology with the edge attributes in the 
property graph model, a large number of intermediate enti-
ties in an ontology are eliminated and the expressiveness of 
the ontology model is improved. The recombination fusion 
formula shown in Box 4. AEdges_pa(PG) is the edge set with predicate attributes in 
knowledge big graph, and  tpଶ. ”pname”  represents the spe-
cific role name of the DatatypeProperty role. DatatypeProp-
erty role nodes can be associated with concept nodes or other 
role nodes through the “Domain” edge in the schema layer of 
the knowledge big graph. DatatypeProperty role nodes repre-
sent the attributes of the other role nodes when they are asso-
ciated with other role nodes. In the instance layer of the 
knowledge big graph, the edge attribute name is the attribute 
value of the “pname” attribute of a DatatypeProperty role 
node. As shown in Figure 3, the DatatypeProperty role node 

Box 4 AEdges୮ୟ(ୋ) = ሼar ∶ tpଵ.ename”<tp2.pname” = someValue > |tpଵ, tpଶ ∈ RoleNodes(PG)ሽ.                                             (8) 

 

Figure 2. ABox layer fusion. 
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expressing time (the attribute value of the “pname” attribute 
is “date”) associates with the SymmetricProperty role node 
representing the marriage relationship (the attribute value of 
the “ename” attribute is “marry”) through the “Domain” 
edge. It means that the marriage relationship has the “date” 
attribute and the marriage relationship is bidirectional. The 
“Jack” node and the “Rose” node are associated through the 
edge with the “marry” label, and this edge has a “date” attrib-
ute of which the value is “1990.” 
 
4.2 Constraint layer fusion 
 
The function of the ontology is reflected in two aspects. 
One is the interchangeability of knowledge. By integrating 
the ontology into the knowledge big graph, the semantics 
are placed in the data. The description information about 
the knowledge big graph’s structure can be obtained easily 
by querying the schema layer of the knowledge big graph, 
making the knowledge big graph self-descriptive, which fa-
cilitates its subsequent transfer and utilization. The other 
aspect is the interoperability between knowledge elements, 
which is reflected in the semantic application of ontology 
reasoning. However, the property graph model lacks strong 
semantic constraints. It is likely to produce incorrect or con-
tradictory data during construction and evolution, which in 
turn leads to knowledge graphs based on the property graph 
model being prone to providing incorrect answers in subse-
quent knowledge services. Therefore, it is necessary to inte-
grate the consistent reasoning function of the ontology into 
the knowledge big graph to improve the self-checking abil-
ity of knowledge big graph, which has important practical 
significance for the construction and update of the know-
ledge base. 

This paper also focuses on the fusion of knowledge in-
teroperability in ontologies with the predicate attributes of 
the property graph model to achieve semantically consistent 
reasoning in the knowledge big graph. The constraint layer 
fusion consists of two parts: 1) mapping the traditional con-
sistent reasoning of ontology to the path traversal query of 
the property graph model; and, 2)recombining the ontol-
ogy semantics and the predicate attribute of the property 
graph model to make the knowledge big graph capable of 
consistent reasoning of predicate attributes that the ontol-
ogy cannot. 
 
4.2.1 Traditional consistent reasoning of ontology 
 
Traditional ontology’s consistent reasoning mainly relies on 
an external reasoning machine, modifying internal algo-
rithms of inference engines or directly calling external rea-
soning machines to determine whether and where incon-
sistency problems exist in the ontology knowledge base by 
finding the minimal unsatisfactory maintaining subset (Liu 
et al. 2012, Parsia et al. 2005). These methods have insuffi-
cient efficiency and stability and cannot deal with large-
scale ontology knowledge bases. Existing studies have 
shown that the methods based on graph traversal is superior 
to the calculation methods based on inference engines (Fu 
et al. 2016; Qi et al. 2015; Fu et al. 2014). Taking compre-
hensive consideration of efficiency and usefulness, we 
achieve completely domain-independent consistent reason-
ing by fusing the primitives of the ontology and the path 
traversal query of the graph. Specifically, it is divided into 
two levels: 1) consistent reasoning at the schema level of the 
knowledge big graph, focusing on whether logical contra-
diction exists in the semantic relationships between concep-
tual nodes; and, 2) consistent reasoning at the instance level 

 

Figure 3. Example of fusion of predicate attribute and edge attribute. 
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of knowledge big graph, focusing on whether the attributes 
of the instance nodes and the relationship between the in-
stance nodes are consistent with the semantics defined by 
the schema layer. 
 

(1) Consistent reasoning at the schema level of the 
knowledge big graph. It mainly includes subclassOf 
consistency reasoning (see Figure 4a) and disjoint rela-
tionship consistency reasoning at the schema level (see 
Figure 4b). The schema layer of the knowledge big 
graph is mainly composed of concepts and subclassOf 
relationships between concepts. There may be incon-
sistent semantics between two concepts with a subclas-
sOf relationship; that is, it is necessary to check 
whether the path formed by the subclassOf relation-
ship is looped to complete the subclassOf consistency 
inference. Disjoint consistency inference at the schema 
level refers to finding whether two concepts with dis-
joint relationships have the same subclasses. 
(2) Consistent reasoning at the instance level of the 
knowledge big graph. It mainly includes instance rela-
tionship consistency reasoning (see Figure 4c), con-
sistency reasoning of the attribute domain of the in-
stance (see Figure 4e), and consistency reasoning of 
disjoint relationships at the instance level (see Figure 

4d). Instance relationship consistency reasoning is also 
called object property consistency reasoning. It refers 
to checking whether the label of the edge in the in-
stance layer and the labels of the two nodes associated 
with the edge are correctly mapped one by one in the 
schema layer. Consistency reasoning of the attribute 
domain of the instance refers to checking whether the 
attribute domain of the instance node is consistent 
with the label of the instance node; that is, finding 
whether the two nodes corresponding to the label of 
the instance node and the attribute of the instance 
node are connected through the “Domain” edge in the 
schema layer. Consistency reasoning of disjoint rela-
tionships at the instance level refers to checking 
whether there is an instance node belonging to two 
disjoint classes.  

 
4.2.2 Consistent reasoning for predicate attribute 
 
The predicate attribute cannot be directly expressed in the 
traditional ontology model, and consistent reasoning for 
predicate attribute is impossible to be performed for the on-
tology. The attributes of the edge can be used to directly rep-
resent the attributes of the predicate in knowledge big 
graph, which enriches the expression ability of the ontology. 

 

Figure 4. Inconsistent semantics in the knowledge big graph. 
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As a result, we implement the consistent reasoning of the 
domain of predicate attribute and the consistent reasoning 
of custom domain constraints in the knowledge big graph. 
Similar to the consistency reasoning of the attribute domain 
of instance, the consistent reasoning of the domain of pred-
icate attribute refers to checking whether the two nodes cor-
responding to the label of the edge and the attribute of the 
edge at the instance layer are connected through the “Do-
main” edge at the schema layer of the knowledge big graph 
(see Figure 4f). The consistent reasoning of custom domain 
constraints refers to checking whether the predicate attrib-
ute meets the domain constraint defined by domain experts, 
such as the sum of shareholding ratios that the same com-
pany held by all shareholders cannot exceed one hundred 
percent in the financial domain. 
 
5.0  Application of the knowledge big graph in  

financial shareholding structure 
 
The shareholding structure is the foundation of the govern-
ance system of financial institutions in the financial field, 
which determines governance mechanisms of financial in-
stitutions and related companies (Lemmon and Lins 2003). 
The financial ownership network formed by the equity re-
lationship of financial institutions profoundly affects the 
stability of the entire financial system, such as the occur-
rence of financial risks (Saunders et al. 1990; Fichtner et al. 
2017) and the spread of financial risks (Elliott et al. 2014). 
Furthermore, analysis of the financial ownership network is 
the basis of the supervision and risk control of typical finan-
cial problems—capital groups, cross-shareholding, actual 
controller, etc.  

We are concerned with China’s financial ownership net-
work. The financial ownership network consists of finan-
cial institutions and the direct or indirect shareholders’ 
holding relationships of financial institutions. In general, 
conflicting data is prone to appear during the construction 
process due to the need to extract data from multiple data 
sources to build a complete financial ownership network. 
Moreover, the shareholding structure of enterprises changes 
frequently over time, which easily leads to data incon-
sistency in financial ownership network. Therefore, we con-
vert the China’s financial ownership network into the 
knowledge big graph to lay the foundation for the accuracy 
and efficiency of the subsequent analysis of the financial 
shareholding structure. 
 
5.1 Financial ownership knowledge big graph 
 
The schema layer of the financial ownership knowledge big 
graph explained here explicitly describes the semantics of 
the hierarchical classes and relationships of entities in 
China’s financial shareholding structure while the instance 

layer mainly shows the entities and relationships in the fi-
nancial shareholding structure. 

According to the TBox layer fusion rules, the schema layer 
of the financial ownership knowledge big graph constructed 
is shown in Figure 5. The schema layer stipulates the main 
categories of financial institutions and the hierarchical cate-
gories of civil subjects that are shareholders of the financial 
institutions. The shareholding property as the object prop-
erty stipulates that all social subjects can be shareholders in 
the shareholding structure while the entity held can only be 
an entity of the type of enterprise or financial institution and 
their subclasses. The control property is a sub-property of the 
shareholding and is an asymmetric role; that is, entity B can-
not control entity A when entity A controls entity B. The 
event is the key element of financial risk identification and 
control. Social subjects as participants in events that contain 
financial risks are likely to become the media for the spread of 
financial risks (Petrone and Latora 2018; Poledna et al. 2015). 

According to the ABox layer fusion rules, the fragment of 
the instance layer of the financial ownership knowledge big 
graph is shown in Figure 6, using the shareholding structure 
of the China Development Bank as an example. The direct 
shareholders of the China Development Bank are the Chi-
nese Ministry of Finance, Wutongshu Investment Platform 
Co., Ltd., Central Huijin Investment Ltd., and the National 
Council for Social Security Fund. The sum of the shares that 
they hold in China Development Bank is one. The share and 
start time are attributes of shareholding edges and control 
edges, corresponding to the role nodes of “share” and “start 
time” in the schema layer of the financial ownership know-
ledge big graph. The labels of the China Development Bank 
node correspond to the “state policy bank” and “state-owned 
business” nodes in the schema layer of the financial owner-
ship knowledge big graph. 
 
5.2  Consistent reasoning algorithms for the financial 

ownership knowledge big graph 
 
We use Cypher query language to describe the consistent in-
ference algorithms for the financial ownership knowledge 
big graph. Cypher is a user-friendly, declarative property 
graph query language. The Cypher query used in this paper 
has the following structure: 
 

MATCH <pattern1> 
[ WITH <result1> ] 
[MATCH <pattern2> ] 
[ WHERE <constraint> ] 
RETURN <result2> [ as <expression>]. 
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The MATCH clause refers to the path or subgraph struc-
ture being queried. The WITH clause uses the result of the 
previous MATCH clause query as the input of the next 
MATCH clause query. The WHERE clause is used to con-
ditionally restrict the query process or filter the query result, 
and the RETURN clause returns the final query result. 
The MATCH clause in this paper involves indefinite-length 
path queries. For example, “(n1:Class)-[:SubClassOf*0..]-
>(n2:Class)” means that the n1 concept node is a direct 
child of the n2 concept node Class (path length is 1), indi-
rect subclass (path length is greater than 1), or n2 concept 
node itself (path length is 0). “*0..” means that the path 
length is at least zero. 

The descriptions of the consistent reasoning algorithms 
implemented with Cypher are shown in Table 2. If the re-
sult returned by the consistent reasoning is null, it means 
there are no inconsistent semantics. Otherwise, the result re-

turned by the consistent reasoning represents the incon-
sistent semantics, which needs to be subsequently corrected 
manually. Taking “consistency reasoning of subclassOf” as 
an example (Table 2a), if n1 is a(n) (indirect) subclass of n2, 
n2 is a(n) (indirect) subclass of n3, and n1 and n3 are the 
same conceptual node, then the path will be returned, 
which contains inconsistent semantics. The Cypher de-
scriptions of the five consistent reasoning algorithms do not 
involve specific domain vocabularies and are completely do-
main-independent except for the consistent reasoning algo-
rithm of custom domain constraints. 
 
5.3 Experimental results 
 
The financial ownership knowledge big graph we con-
structed contains the ownership of 1,432 financial institu-
tions and all enterprises and other entities of the National 

 

Figure 5. The schema layer of the financial ownership knowledge big graph. 



Knowl. Org. 48(2021)No.1 
Xiao-Bo Tang, Wei-Gang Fu and Yan Liu. Knowledge Big Graph Fusing Ontology with Property Graph 

66 

Enterprise Credit Information Publicity System of China. 
There are currently more than eighty million entities and 
nearly 100 million shareholding edges, covering almost all 
Chinese enterprises and their shareholders. The original 
data comes from the National Enterprise Credit Infor-
mation Database of China and annual reports of Chinese 
financial institutions. The Neo4j graph database is used to 
store, query, and reason about the financial ownership 
knowledge big graph. The query results of the schema layer 
and instance layer of the financial ownership knowledge big 
graph in the Neo4j database are shown in Figure 7. 

In order to test the accuracy of the consistent inference 
algorithm, the following inconsistent semantics is added to 
the financial ownership knowledge big graph in advance: 
 

1. Add  
 “civil subject :ୗ୳ୠେ୪ୟୱୱ୭ሱ⎯⎯⎯⎯⎯⎯⎯ሮ social group.”  
 Figure 5 shows that the social group is an indirect sub-

class of the civil subject, which results in semantic incon-
sistency of the subclassOf relationship. 

2. Add  
 “state_owned business :ୗ୳ୠେ୪ୟୱୱ୭ሱ⎯⎯⎯⎯⎯⎯⎯ሮ public institution”  
 and set the instance node “China Investment Corpora-

tion” to have the labels “state-owned enterprise” and 
“government agency.” Figure 5 also shows that state-
owned enterprise is an indirect subclass of non-operating 
subject and government agency and public institutions 
are indirect subclasses of operating subject. There is a dis-
joint relationship between non-operating subject and 

non-operating subject. This results in inconsistent se-
mantics of disjoint classes based on common subclass 
and inconsistent semantics of disjoint classes based on 
common instance. 

3.  Remove all labels of the “Chinese Ministry of Finance” 
node and the “China Development Bank” node. Figure 6 
shows that the Chinese Ministry of Finance is the direct 
shareholder of the China Development Bank. The do-
mains of shareholding relationships are social subject and 
its subclasses, and the ranges of shareholding relationships 
are enterprise and financial institution as well as their sub-
classes (Figure 5), resulting in inconsistent semantics of in-
stance relationship (shareholding). The Chinese Ministry 
of Finance node and the China Development Bank node 
have datatype property (“name”), and the domains of 
datatype property (“name”) are social subject and its sub-
classes. Therefore, inconsistent semantics of attribute do-
main of instance are also generated. 

4.  Change the label of the shareholding edge of the “Cen-
tral Huijin Investment Ltd.” node to the “China Devel-
opment Bank” node from “shareholding” to “partici-
pate.” The edge has a datatype property (“share”), and 
the domains of the datatype property (“share”) are the 
object property (“shareholding”) and its sub-properties 
(see Figure 5), resulting in inconsistent semantics of the 
domain of predicate attribute. 

  

 

Figure 6. The fragment in the instance layer of the financial ownership knowledge big graph. 
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5. Add  
 “Ministry of Finance :ୡ୭୬୲୰୭୪ሱ⎯⎯⎯⎯ሮ Chinese Ministry of  Finance”  
 and set the value of the attribute (share) of the control 

edge to 0.3654. This results in the China Development 
Bank being controlled or held by a ratio of more than 

one, which generates inconsistent semantics of predicate 
attribute custom domain constraints. 

 
The results of the implementation in the Neo4j database us-
ing the consistent reasoning algorithms designed in this pa-
per are shown in Figure 8. The consistent reasoning algo-

 

Table 2. The Cypher description of the consistent reasoning algorithms. 
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rithms reasoned out all the pre-added inconsistent seman-
tics, which proves the logical correctness of the knowledge 
big graph and the validity of the consistent reasoning algo-
rithms based on the knowledge big graph. According to the 
results of the inconsistent reasoning shown in Figure 8, fur-
ther correction can be performed to remove inconsistent se-
mantics, ensure the logical consistency of the knowledge big 
graph, and lay a quality foundation for subsequent know-
ledge services based on the knowledge big graph. 
 
6.0 Conclusion 
 
The huge amount of knowledge, the complexity of know-
ledge semantics, and the frequent updates of knowledge 
have brought new problems to knowledge representation, 
organization, storage, and utilization in big data environ-
ment. These facts seriously hinder the timeliness and accu-
racy of subsequent knowledge services. To this end, the pa-

per first proposes the ontology and property graph fusion 
framework (OPGFF), combining the precise description of 
the ontology model and the native graph characteristics of 
the property graph model from the perspective of know-
ledge fusion. Then, the construction of the financial own-
ership knowledge big graph and semantic reasoning are per-
formed. The OPGFF framework proposed in this paper can 
be applied to general, large-scale knowledge organizations, 
such as application in the field of medical biology, and can 
be new a perspective for the construction and utilization of 
knowledge bases. In addition, the schema layer of the finan-
cial ownership knowledge big graph and the consistent rea-
soning algorithms provide semantic analysis tool and se-
mantic data quality constraints for subsequent financial 
risk discovery. 

Generic ontology model contains other semantic rela-
tionships in addition to the basic semantic relationships se-
lected in the paper. Therefore, the knowledge big graph 

 

Figure 7. Visual query results of financial ownership knowledge big graph. 
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does not contain all the ontology semantics (such as equiv-
alent anonymous classes or disjoint attributes). Subsequent 
research can add more ontology semantics to the knowledge 
big graph according to actual needs. The consistent reason-
ing algorithms we proposed can be further expanded or im-
proved in the future, such as by combining more efficient 
graph mining algorithms and cognitive computing technol-
ogies (Chen et al. 2019). 
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