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Abstract

We provide two sufficient conditions for a finite state Markov chain to have positive stationary
first-order autocorrelation. The first condition requires all diagonal entries of the transition
matrix to be greater than one half. The second requires the transition probability to satisfy a
monotonicity property, which is a particular case of a result for Markov processes with more
general state space.

I Introduction

In most dynamic economic analyses, it is central to study the effects of stochastic shocks to the eco-
nomic system under consideration, and it is almost customary for researchers to consider the case
where these shocks are persistent over time, as long as doing so is technically feasible. Researchers
often model a shock within a stationary environment by an ergodic Markov chain, which allows
for a variety of patterns of serial dependence. Consequently, the stationary autocorrelations of a
Markov chain, especially the first-order one, provide a convenient summary of the persistence of
a shock. Since the persistence of a shock is typically captured by a positive (first-order) autocor-
relation, it is of interest to know when will a Markov chain possesses such a feature. Knowing
this is helpful in guiding researchers to choose an appropriate Markov chain for their modeling
purposes.

We shall provide two simple sufficient conditions on the transition matrix of a finite state
ergodicMarkov chain such that the first-order autocorrelation ρ under the stationary distribution is
positive. Let {Xt} be a finite state ergodic Markov chain, with x � (x1 , . . . , xn)′ and P � (pi j)1≤i , j≤n

denoting the state space vector and the transition matrix. The first condition requires that the
diagonal entries of the transition matrix to be greater than one half, which we call diagonal
dominance condition. This condition captures one aspect of the notion of persistence, namely that
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the current state of a shock tends to persist into the next period. The mathematical interpretation
is pii � P(Xt+1 � xi |Xt � xi) > P(Xt+1 , xi |Xt � xi) �

∑
j,i pi j , or equivalently pii > 1

2 . The second
condition requires that the cumulative transition distributions satisfy a monotonicity property
with respect to the current states, i.e., Fi , j ≥ Fi+1, j ∀i , j where Fi , j �

∑
k≤ j pi ,k and {x1 , . . . , xn} is

such that xi < xi+1. This condition capture another aspect of the notion of persistence, namely
that whenever the current state becomes higher then the expected value of the next period’s state
should also be higher. Mathematically this means that the conditional expectation E(Xt+1 |Xt � x)
should be increasing in x, which in turn is an implication of the monotonicity condition.

It is nontrivial to characterize the dependence of ρ on the primitives of a Markov chain, espe-
cially on P. Because the calculation of ρ is greatly complicated by the need for calculating first the
stationary distribution u � (u1 , . . . , un)′, a highly nonlinear function of P. Nonetheless, the intu-
ition that most probabilistic properties of a Markov chain—including persistence/autocorrelation
as we would argue—are determined mainly by u and P, hence P ultimately, suggests that certain
conditions on P alone should imply positive ρ. The two sufficient conditions developed in this
paper, both of which are imposed on P exclusively, confirm this intuition.

To prove the sufficiency of the diagonal dominance condition, we first show that ρ is closely
related to the eigenvalues of a particular matrix consisting of u and P and preserving the diagonal
dominance property of P. Relying on powerful tools from matrix theory, notably the method of
Geršgorin disks for bounding the eigenvalues of a diagonally dominant non-negative matrix, we
am able to give a simple lower bound of ρ. The sufficiency of the diagonal dominance conditio
then follows easily. Furthermore, some fine-tuning results in matrix theory allow me to further
weaken the condition into a weaker form, which requires pii > 1

2 for only one i while p j j �
1
2 for all

j , i. Along the way, we also develop simple upper bounds for ρ; numerical examples show that
both the lower and upper bounds are tight. Despite drawing on existing results in matrix theory,
to my best knowledge, this paper is the first one to give bounds on ρ based on P, and consequently
uncover the diagonal dominance condition for ρ > 0. The closest paper in this strand of literature
to my work is Diaconis and Stroock (1991), in which the authors develop bounds on functions that
are closely related to ρ of aMarkov chain.1 However, their techniques only apply toMarkov chains
that are reversible, whereas we impose no such assumption on P a priori.

Theproof of the sufficiencyof themonotonicity condition rests ona simple lemma: cov(Xt ,Xt+1) >
0 ifE(Xt+1 |Xt � x) is increasing in x. It turns out that this is a general result applying for a Markov
process with continuous state space like R1. Correspondingly, a general version of the mono-
tonicity condition in the transition distribution, F(y |x) � P(Xt+1 ≤ y |Xt � x), which states that

1Bounding eigenvalues of a non-negative matrix is a classical topic in matrix theory, known as spectral localization
problem. There is a large literature on this topic; for classical references, see Seneta (1981) and Horn and Johnson
(1985). Rothblum and Tan (1985) contain an extensive survey of bounding the second largest (in modulus) eigenvalue
of a non-negative matrix; as shown below, this is closely related to the upper bound of ρ of a Markov chain. Diaconis
and Stroock (1991) adopt a variational characterization of the eigenvalues of a Markov transition matrix and proceed to
develop bounds for both the second largest and smallest eigenvalue. Without explicit acknowledgement, the functionals
they use essentially correspond to 1 − ρ and ρ. However, their objective is to derive spectral bounds of P from bounds
on ρ, exactly the opposite of the approach in this paper.
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F(y |x) ≥ F(y |x′) whenever x < x′, implies that E(Xt+1 |Xt � x) is increasing in x. This is noth-
ing but the familiar first order stochastic dominance of F(y |x) in x. For the one dimensional
Markov chain (process) considered here, the monotonicity condition on the transition distribution
is equivalent to the concept of monotone transition function defined in Stokey et al. (1989, p.220),
which is fundamental to most dynamic economic analysis with persistent shocks.2 The result
we demonstrate therefore makes clear that many works in dynamic economic modeling implic-
itly exclude the possibility of incorporating shocks with negative autocorrelations by assuming
monotone transition function for each shock in their models.

The organization of the paper is as follows. In Section 2, we lay down the basic setup and state
necessary assumptions. We develop the diagonal dominance condition in Section 3 and proceed
to the monotonicity condition in Section 4. Then we give some results regarding higher order
autocorrelations in Section 5. Numerical examples on both conditions appear in Section 6 and
Section 7 concludes.

II Setup

Let {Xt}t≥0 be a discrete time, finite state Markov chain with a state space {x1 , . . . , xn} and a
transition matrix P � (pi j)1≤i , j≤n . Let x � (x1 , . . . , xn)′ (prime denotes transpose). Each state xi is a
real number, and in general, all states are mutually different, hence x , 0 (n × 1 vector of 0s); but
{xi} is not necessarily ordered in i.

Throughout this paper, we assume {Xt} is ergodic, i.e., P is irreducible and aperiodic. Let
{λi(P)}1≤i≤n denote the eigenvalues of P ordered by |λ1(P)| ≤ · · · ≤ |λn(P)| in modulus. It is
well known that 1 is an eigenvalue of P and |λi(P)| ≤ 1 for all i, so, without loss of generality,
let λn(P) � 1. Irreducibility of P implies that there is a unique (left) eigenvector u � (u1 , . . . , un)′
associatedwith λn(P) such that u is strictly positive (entry-by-entry) and 1 � u′1 (n×1 vector of 1s).
In other words, u is the unique stationary distribution of P. On top of irreducibility, aperiodicity
is equivalent to the fact that P has no eigenvalue of a modulus 1 other than λn(P), i.e., |λi(P)| < 1
for all i < n. All these facts are standard in the literature (Horn and Johnson 1985, Ch. 8; Seneta
1981, Ch. 4). We remark here that an ergodic transition matrix is primitive as defined in Horn and
Johnson (1985, p. 516); thus we use “ergodic” and “primitive” interchangeably in the rest of the
paper. Lastly, we adopt the convention that whenever E(·) denotes an unconditional expectation,
it is under the stationary distribution u.

To simplify the exposition, we assume EXt � 0; this is innocuous as the same results on
autocorrelations hold for the transformed process Yt ≡ Xt − EXt when EXt , 0. Given EXt �

0, the stationary variance and autocovariances can be written succinctly as varXt � EX2
t and

cov(Xt ,Xt+k) � EXt Xt+k for any k ≥ 1. Let U � diag(u), the diagonal matrix where ui is the i’th

2Donaldson and Mehra (1983) give an early application of monotone transition function to study optimal growth
model with correlated productivity shock. Hopenhayn and Prescott (1992) develop a widely applicable theoretical
framework of Markov process based on this concept. See Stokey et al. (1989, Ch. 12–13) for an introductory treatment
of monotone Markov process with extensive examples of applications.
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diagonal entry. Some simple algebra yields following expressions:

EXt � u′x, EX2
t � x′Ux, EXt Xt+k � x′UPkx.

As a consequence, the k’th-order stationary autocorrelation ρ(k) is the ratio of two quadratic forms

ρ(k) � x′UPkx
x′Ux

.

With slight abuse of notation, denote simply by ρ the first-order autocorrelation.
Since u can be written directly as a function of P according to the following expression

u′ � e′n
[
(P − I)n×(n−1)

��1]−1
� e′n


p11 − 1 · · · p1n 1
...

...
...

pn−11 · · · pn−1n−1 − 1 1
pn1 · · · pnn−1 1



−1

,

where 1 is the n × 1 vector of 1s and en � (0, . . . , 0, 1), it is clear that ρ(k) is a complicated function,
especially in P. The principal objective of the rest of this paper is to develop sufficient conditions
on P under which it becomes tractable to characterize ρ(k)with minimal extra conditions on x. We
will focus on ρ � ρ(1) in the next two sections while take as given P as an ergodic matrix.

III Diagonal Dominance Condition

The basic idea to derive bounds on ρ is to use the variational characterization of quadratic forms.
Towards this end, first note that

ρ �
x′((UP + P′U)/2)x

x′Ux
subject to u′x � 0,

which follows from x′UPx � x′P′Ux. Next, let v � (√u1 , . . . ,
√

un)′, V � diag(v), and

Q � (VPV−1
+ V−1P′V)/2.

By letting y � Vx, we can further write ρ as

ρ �
x′UPx
x′Ux

�
x′((UP + P′U)/2)x

x′Ux
�

y′Qy
y′y

subject to v′y � 0,

since U � V2 � V′V, (UP + P′U)/2 � V′QV, and u′x � 0 is equivalent to v′y � 0. Denote by
λ1(Q) ≤ · · · ≤ λn(Q) the n eigenvalues of Q, all of which are real as Q is symmetric. In principle,
one can use standard variational characterization upon y′Qy/y′y right away to derive bounds on
ρ in terms of {λi(Q)}. However, it is imperative to first work out more qualitative information of
{λi(Q)}.

For this, let
R � V−1QV � (P + U−1P′U)/2,
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it follows that R has the same set of eigenvalues {λi(R)} as Q, and {λi(R)} can be arranged such
that λ1(Q) � λ1(R) ≤ · · · ≤ λn(Q) � λn(R). Evidently, R is nonnegative. Since

R1 � (P1 + U−1P′U1)/2 � (1 + U−1P′u)/2 � (1 + U−1u)/2 � (1 + 1)/2 � 1,

R is actually a transitionmatrix, and consequently λn(R) � 1. Given that P is primitive, there exists
an integer m ≥ 1 such that Pm is strictly positive (Horn and Johnson, 1985, Theorem 8.5.2). As a
result, Rm is strictly positive, hence R is primitive, implying |λi(R)| < 1 for all i < n. The following
lemma summarizes the results obtained so far.

Lemma 1. Suppose P is ergodic and let {λi(Q)} and {λi(R)} denote the sets of eigenvalues of Q and R.
Then R is an ergodic transition matrix and

−1 < λ1(Q) � λ1(R) ≤ · · · ≤ λn−1(Q) � λn−1(R) < λn(Q) � λn(R) � 1.

Now, the standard results of variational characterization imply the following bounds on ρ.

Lemma 2. Suppose P is ergodic and let {λi(R)} denote the eigenvalues of R. Then

−1 < λ1(R) ≤ ρ ≤ λn−1(R) < 1.

Proof. The standard variational characterization (Horn and Johnson 1985, Sec. 4.2; Magnus and
Neudecker 2007, Sec. 11.7) yields

λ1(R) � λ1(Q) ≤ min
y,0

y′Qy
y′y

≤ min
v′y�0,y,0

y′Qy
y′y

� max
v′y�0,y,0

y′Qy
y′y

≤ λn−1(Q) � λn−1(R),

where the last inequality follows from the observation that

Qv � (VP1 + V−1P′u)/2 � (V1 + V−1u)/2 � v,

i.e., v is the eigenvector associated with λn(Q) � 1. QED

Remark 1. A transition matrix P is reversible if and only if ui pi j � u j p ji for all i , j, or in matrix
form, UP � P′U. Thus UP is symmetric if and only if P is reversible, and in this case, vari-
ational characterization can be applied directly to ρ � x′UPx/x′Ux. In particular, UP � P′U
implies VPV−1 � V−1P′V and hence Q � VPV−1, therefore {λi(P)} � {λi(Q)}, i.e., all P’s eigen-
values are real. Diaconis and Stroock (1991) develop various bounds on λ1(P) and λn−1(P) via
bounds on ρ � x′UPx/x′x, which then provides bounds on the rate of convergence to stationarity
max(|λ1(P)|, λn−1(P)). Fill (1991) extends this work to nonreversible Markov chains and shows
that, for a general ergodic P, the rate of convergence to stationarity is bounded by λn−1(M) and
λn−1(R), where M � PU−1P′U and R is as defined above. It is easily shown that both M and R are
reversible transition matrices with the common stationary distribution u, the results of Diaconis
and Stroock (1991) can thereby be applied to give bounds on λn−1(M) and λn−1(R).
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For ρ > 0, it suffices to have λ1(R) > 0. Given P, one can always compute numerically λ1(R)
by first computing u. However, since both u and λ1(R) are intricate functions of P, to gain more
tractability, it is crucial to get a more explicit relationship between λ1(R) and P. The Geršgorin
discs prove to be an elegant way for relating λ1(R) directly to P.

Proposition 1. Suppose P is an ergodic matrix. Then ρ ≥ 2 mini pii − 1.

Proof. Lemma 1 shows that R is a transition matrix, so that each of its row sums equals to 1. Since
the i’th diagonal entry of R equals to pii , it follows that the off-diagonal sum of the i’th row is
1 − pii . Because all eigenvalues of R are real, the theorem of Goršgorin discs (Horn and Johnson,
1985, p. 344) asserts that

{λ1(R), . . . , λn(R)} ⊂
n⋃

i�1
{z ∈ R1 : |z − pii | ≤ 1 − pii},

therefore λ1(R) ≥ 2 mini pii − 1. Lemma 2 then implies that ρ ≥ λ1(R)2 mini pii − 1. QED

Remark 2. For a complex matrix A � (ai j)1≤i , j≤n , the Goršgorin discs refer to the discs on the
complex plane defined by Gi(A) � {z ∈ C : |z − aii | ≤

∑
j,i |ai j |} for each i where | · | denotes

modulus. The Goršgorin region refers to G(A) � ∪iGi(A), which contains all eigenvalues of A.

Based on the lower bound in this proposition, the diagonal dominance condition follows as a
corollary. Recall that a matrix A � (ai j) is strictly diagonally dominant if |aii | >

∑
j,i |ai j | for all i.

For a transition matrix P, this is equivalent to pii > 1/2 for all i as each row sum of P is 1.

Corollary 2 (Strong diagonal dominance). Suppose P is strictly diagonally dominant. Then ρ > 0.

Proof. This trivially follows from 2 mini pii − 1 > 0 and the lower bound stated in the preceding
proposition. QED

Specifically, we label this condition as the strong version of the diagonal dominance condition
since pii > 1/2 is required for all i. Strictly diagonal dominance is needed for the lower bound
λ1(R) ≥ 2 mini pii − 1 to imply λ1(R) > 0. However, we shall show below that strictly diagonal
dominance can be weakened into diagonal dominance and one still gets λ1(R) > 0. First recall that
a real matrix A � (ai j) is diagonally dominant if |aii | ≥

∑
j,i |ai j | for all i and the strict inequality

holds for at least one i. The proof of this strengthened result requires some fine-tuning fact in
matrix theory regarding the Geršgorin region of an irreducible matrix.

Corollary 3 (Weak diagonal dominance). Suppose P is diagonally dominant. Then ρ > 0.

Proof. The same derivation in the proof of Proposition 1 shows that whenever P is diagonally
dominant, R is also diagonally dominant. By assumption, P is irreducible. Since U−1P′U is
nonnegative, R � (P + U−1P′U)/2 is irreducible as well. A straightforward application of the
theorem of Taussky (Horn and Johnson, 1985, Corollary 6.2.7) then shows that λ1(Q) > 0. QED
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Remark 3. For various characterizations of irreduciblematrix, seeHorn and Johnson (1985, Sec. 6.2).
The nature of the Taussky’s Theorem is as follows. Given an irreducible matrix A, a point λ
belonging to the boundary of the Goršgorin region G(A) can be an eigenvalue of A only if every
Goršgorin disc passes through λ. Thus 0 is excluded from the spectrum of R by the disc associated
with the strict inequality 2pii − 1 > 0 for some (at least one) i, despite the possibility of mini{2pii −
1} � 0.

The matrix theoretic arguments employed so far can also be used to develop useful upper
bounds on ρ. The next proposition states that ρ is bounded from above by the second largest
eigenvalue of R.
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