金融中介理论

第三讲: 金融中介与流动性创造

授课人: 刘岩武汉大学金融系

Content

- History of bank runs and bank panics
- Background: model of liquidity of insurance
- Instability and remedies
- Disciplinary role of bank runs
- Efficient bank runs: reconstruction
- Extension: interbank markets
- Systemic risk and contagion

History of bank runs and bank panics

- Bank runs vs. Bank panics?
 - Entity to be affected
 - ☐ Bank runs: one individual bank
 - Bank panics: whole banking market
- In U.S. history, bank panics are rather common
 - 1890-1908: 21 bank panics
 - > 1893 crisis results in 500 bank failures
 - > 1907 crisis results in 100 bank failures
 - 1929-1933: 5 bank panics
 - □ Foundation of the Fed, December 23, 1913
 - > 1907 crisis averted by J. P. Morgan, who died on March 31, 1913

Why studying bank panics matters?

- From macroeconomics perspective:
 - □ GNP growth : 3.75 % to 6.82%
 - Liquidity shortage
 - ☐ Interference to monetary policy
- From individual perspective
 - ☐ Bankruptcy: prisoner's dilemma
 - Loss of confidence in government

核心文献

- Diamond, D. W., and P. H. Dybvig. 1983. Bank Runs, Deposit Insurance, and Liquidity. *Journal of Political Economy* 91:401–419.
- Diamond, D. W., and R. G. Rajan. 2001. Liquidity Risk, Liquidity Creation, and Financial Fragility: A Theory of Banking. *Journal of Political Economy* 109:287–327.
- Allen, F., and D. Gale. 1998. Optimal Financial Crises. *Journal of Finance* 53:1245–1284.
- Allen, F., and D. Gale. 2000. Financial Contagion. *Journal of Political Economy* 108:1–33.

Background: Model of Liquidity Insurance

- One homogenous good
- Three dates: t = 0, 1, 2
- A continuum of *ex ante* identical agents
 - \square i.i.d. liquidity shocks: patient (π_1) or impatient (π_2)
- Maximize expected utility:

$$U = \pi_1 u(\mathcal{C}_1) + \pi_2 u(\mathcal{C}_2)$$

Background: Model of Liquidity Insurance

- Illiquid storage technology
 - \square R > 1: return at t = 2
 - \square l < 1: return at t = 1
- Autarky: $C_1 = lI + 1 I$, $C_2 = RI + 1 I$
 - \square Time t = 0, choose of I

Optimal Allocation

Optimal allocation problem:

$$\max U = \pi_1 u(C_1) + \pi_2 u(C_2)$$
 s.t. $\pi_1 C_1 = 1 - I$
$$\pi_2 C_2 = RI$$

F.O.C:

$$-u'(C_1^*) + Ru'(C_2^*) = 0$$

- Market solution: $C_1 = 1$, $C_2 = R$, $I = \pi_2$, p = 1/R
 - Bond market at t = 1, paying one unit of consumption good at t = 2, price p, so that $C_1 = pRI + 1 I$, $C_2 = RI + \frac{1-I}{p} \Rightarrow pR = 1$
 - Not optimal
 - Asymmetric information

Fractional Reserve Banking System

- Contract with optimal withdrawal (C_1^*, C_2^*)
 - \square C_1^* : if impatient
 - \square C_2^* : if patient
- Amount of liquidity at t = 1: $1 I = \pi_1 C_1^*$
- Amount of liquidity at t = 2: $RI = \pi_2 C_2^*$
- Banks: solvent with probability 1
 - Intuition: eliminate asymmetric information by pooling
- Wait. Something is missing. What?

Another Scenario

- What if patients expect other patients to be impatient?
 - Banks: forced to liquidate its investment
 - □ Total asset at t = 1: $\pi_1 C_1^* + (1 \pi_1 C_1^*)l < C_1^*$
 - Bank runs happen: all depositors withdraw
- Stability in realization of the first equilibrium is yearned for!

Instability: Early Withdrawal

- Reason 1: higher outside return
 - $\Box C_2^*/C_1^* 1 < r$
- Reason 2: multiple equilibrium
 - Speculation about others' action
 - ☐ Institutional arrangements: needed to rule out the
 - > inefficient equilibrium

Remedy No.1: Narrow Banking

Case 1: repayment to all depositors using liquidity

$$C_1 \leq 1 - I, C_2 \leq RI$$

- Dominated by autarky
- Case 2: liquidity fulfilled by liquidation

$$C_1 \le (1 - I) + lI, C_2 \le RI + 1 - I$$

- Reduced to autarky
- Case 3: securitization of its long run technology
 - ☐ Same as market solution

Remedy No.2: Regulatory Responses

- Case 1: Suspension of Convertibility
 - Banks: not serve more than withdrawal $\pi_1 C_1^*$
 - ☐ Above the threshold: suspended convertibility
 - Kind of ideal and illegal
- Case 2: Insured depositors
 - ☐ Repayment guaranteed by another intuition

Remedy No.3: Equity Financed Banks

- A dividend d: announced to be distributed at t = 1
 - \square Amount of d: determined ex ante at t = 0
 - \square Reserves of d and investment (1-d)
- Shares of bank
 - ☐ Traded during period 1 (time point matters!)
 - \square One share: ensures a right to consumption R(1-d)
 - \square Equilibrium price p: depends on d

Remedy No.3: Equity Financed Banks (Cont.)

- Take d and p as given
- Impatient agents: sell shares and consume at t = 1
 - $\square C_1 = d + p$
- Patient agents: wait at t = 1 and consume at t = 2
 - $\square C_2 = \left(1 + \frac{d}{p}\right)R(1 d)$
- Price determined through stock market clearing
 - $\square \quad \pi_1 = \pi_2 \frac{d}{p} \Rightarrow p = \frac{\pi_2 d}{\pi_1}$

Remedy No.3: Equity Financed Banks (Cont.)

The equilibrium price yields

$$C_1 = \frac{d}{\pi_1}, C_2 = \frac{R(1-d)}{\pi_2}$$

This is equivalent to

$$\pi_1 C_1 + \pi_2 \frac{C_2}{R} = 1$$

Remedy No.3: Equity Financed Banks (Cont.)

- Reduced to optimal allocation
- Variability in d
 - ☐ More freedom in term structure
 - Room for Pareto improvement to market economy

Disciplinary Role of Bank Runs

- Renegotiation: trigger bank runs potentially
- Bargaining power of banks: limited
- Lead to higher level of financing

Simple Model: Renegotiation Proof

- Opportunity cost: 1 for excess of savings
- Entrepreneurs: project but no cash
- Two periods: t = 1, 2
- Financiers: cash but no project

Simple Model: Renegotiation Proof (Cont.)

- Project:
 - \square *Iy* invested at t = 0
 - \square risk free y earned at t = 0
- Liquidation before t = 1: V_1 for the financier
- Liquidation before t = 1: αV_1 for other institutions
- Liquidation before t = 1:0 for entrepreneurs

Simple Model: Renegotiation Proof (Cont.)

- Assume borrower has all the bargaining power
- At t = 0, a contract would be offered by entre
 - \square (M,R): money invested and repayment
- Entrepreneurs design the contract s.t.
 - $y R \ge 0$
 - \Box Financier has no incentive to liquidate before t = 1

Renegotiation Proof Contract

Reduced to a two-stage dynamic game

Renegotiation Proof Contract (Cont.)

Transformed into a Nash bargaining problem

max
$$[(R - M) - (V_1 - M)]^0 (y - R)^1$$

s.t. $R - V_1 \ge 0$
 $y - R \ge 0$

- To induce financier into taking the offer
 - \square $R-M \ge 0$
- Outcome: (M, V_1) with $M \leq V_1$

Intermediary Financier No Cash

- Assume only the uniformed leader has funds
- Two ways now for entre to be invested
 - ☐ Directly from uniformed leader
 - Indirectly from intermediary

Intermediary Financier No Cash (Cont.)

- Case 1: directly from the uniformed leader
 - \square Liquidation value: αV_1
 - □ Outcome: $(M, \alpha V_1)$ with $M \leq \alpha V_1$
- Case 2: indirectly from intermediary
 - ☐ Intermediary: full bargaining power against leader
 - □ Contract between leader and intermediary: $(M_1, \alpha V_1)$, with $M_1 \le \alpha V_1$
- Level of financing is limited

Bank Runs: Remedy to Limited Financing

- Consider instead there are two depositors
- A deposit contract is offered by intermediary
 - \square Amount raised: V_1
 - \square Withdrawal of $\frac{V_1}{2}$: allowed at any time
 - ☐ First come, first served

Non-renegotiability

Without threat of renegotiation posed by bank

	Withdraw	Wait
Withdraw	$\left(\frac{\alpha V_1}{2}, \frac{\alpha V_1}{2}\right)$	$\left(\frac{d}{2}, \alpha V_1 - \frac{d}{2}\right)$
Wait	$\left(\alpha V_1 - \frac{d}{2}, \frac{d}{2}\right)$	$\left(\frac{V_1}{2}, \frac{V_1}{2}\right)$

Non-renegotiability: A Nash Implementation

If threat of renegotiation posed by bank

	Withdraw	Wait
Withdraw	$\left(\frac{\alpha V_1}{2}, \frac{\alpha V_1}{2}\right)$	$\left(\frac{d}{2}, \alpha V_1 - \frac{d}{2} - \varepsilon\right)$
Wait	$\left(\alpha V_1 - \frac{d}{2} - \varepsilon, \frac{d}{2}\right)$	$\left(\frac{V_1}{2}-\varepsilon,\frac{V_1}{2}-\varepsilon\right)$

Non-renegotiability: Commitment

- Two depositors withdraw
- Banks go bankruptcy
- Two depositors inherit the loan
- Banks' threat: incredible

Non-renegotiability: Intuition

- Expectation of bank runs
 - Limit renegotiation ability of banks
 - Ensure a credible commitment by banks
 - Lead to a higher level of financing

Efficient Bank Runs

- Bank runs
 - □ Correct in part the incentives of management to forebear
- Bank runs are efficient whenever
 - \Box l > E(R|S)
 - where S is a signal on the future return for long run technology

Reconstruction

Signaling form: advertising, financial disclosure, etc.

Extension: Interbank Markets

- Impossibility of liquidation: l = 0
- Banks with i.i.d. liquidity shocks
 - Proportion of patient depositors uncertainty
 - \square (π_L, π_H) with probability (p_L, p_H)
 - Completely diversified

Autarky

- An ex ante investment decision made
- Contingent contract

$$C_1(\pi) = \frac{1-I}{\pi}, C_2(\pi) = \frac{RI}{1-\pi}, \pi = \pi_L, \pi_H$$

Depositors: bear the liquidity shock risk

Interbank Market: Optimal Allocation

$$\max \sum_{k=L,H} p_{k} \left[\pi_{k} u(C_{1}^{k}) + (1 - \pi_{k}) u(C_{2}^{k}) \right]$$

$$s.t. \sum_{k=L,H} p_{k} \pi_{k} C_{1}^{k} = 1 - I$$

$$\sum_{k=L,H} p_{k} (1 - \pi_{k}) C_{2}^{k} = RI$$

 (C_1^k, C_2^k) : deposit contract offered by a bank k

Interbank Market: Results

Results:

$$C_1^k \equiv C_1^* = \frac{1 - I^*}{\pi_a}, C_2^k \equiv C_2^* = \frac{RI^*}{1 - \pi_a}, k = L, H$$

where $\pi_a = p_L \pi_L + p_H \pi_H$

Liquidity shock uncertainty eliminated

Optimal Allocation Decentralized

- \blacksquare Type *L* bank:
 - Extra liquidity: $M_L = 1 I^* \pi_L C_1^*$
- Type *H* bank:
 - \square Extra demand for liquidity: $M_H = \pi_H C_1^* (1 I^*)$
- Market clearing

$$p_L M_L = p_H M_H$$

Optimal Allocation Decentralized (Cont.)

At t = 2, type H bank has extra liquidity

$$RI^* - (1 - \pi_H)C_2^*$$

Repayment of interbank load

$$(1+r)M_H$$

Equalization yields

$$(1+r) = \left(\frac{\pi_a}{1-\pi_a}\right) \left(\frac{I^*}{1-I^*}\right) R$$

Liquidity Depletion: Bank Runs

- Suppose now entrepreneurs faces uncertainty
 - □ Uncertainty in time point of returns: μ at t = 1

 - □ Liquidation at t = 2: αV_2

Liquidity Depletion: Loss for Bank Runs

- Entrepreneurs' loss: y R
- Banks' loss: $R \alpha \left(V_1 + \frac{V_2}{1+\rho} \right)$
 - \square ρ : equilibrium interest rate

Liquidity Depletion: Mechanism

- Case 1: no bank runs
 - Bank needs to acquire additional liquidity: $d \mu R$
 - Only way: liquidate late project

$$(1-\mu)\frac{\alpha V_2}{1+\rho}$$

- \square where ρ is equilibrium discount rate
- Entrepreneurs: $\mu(y R)$ liquidity

Liquidity Depletion: Mechanism

- Case 2: a bank run
 - Banks' liquidity: $\mu \alpha V_1 < \mu R$
 - Entrepreneurs' liquidity: $\mu(y R)$ destroyed
- Bank run depletes liquidity
 - Intuition: value-added technology suspended

Debt deflation

Summary

- Background: Diamond and Dybvig (1983)
- Function of bank system
- Instability and remedies
- Back runs: sometimes efficient and useful