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Why has the average real risk-free interest rate been less than one percent? The question is motivated 
by the failure of a class ofcalibrated representative-agent economies to explain the average return to 
equity and risk-free debt. I construct an economy where agents experience uninsurable idiosyncratic 
endowment shocks and smooth consumption by holding a risk-free asset. I calibrate the economy 
and characterize equilibria computationally. With a borrowing constraint of one year’s income, the 
resulting risk-free rate is more than one percent below the rate in the comparable representative- 
agent economy. 

1. Introduction 

Why has the average real risk-free interest rate been less than one percent? 
The question is motivated by the work of Mehra and Prescott (1985). They 
argue that a class of calibrated representative-agent economies does not match 
the average real return to equity (7%) and risk-free debt (0.8%).’ The models in 
this class predict a risk-free rate that is too large and an equity premium that is 
too small. Subsequent attempts to explain the rate of return observations within 
the representative-agent structure have been largely unsuccessful [see Weil 
(1989) for a review]. Mehra and Prescott suggest that we will have to look 
outside the class of Arrow-Debreu economies for an explanation of the rate of 
return observations. They also suggest focusing attention on explaining why the 
risk-free rate has been so low. 

I investigate the conjecture that market imperfections are important for 
determining the risk-free rate. More specifically, I investigate the importance of 
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idiosyncratic shocks and incomplete insurance. This is operationalized by con- 
sidering a pure exchange economy where agents experience idiosyncratic en- 
dowment shocks and smooth consumption by holding a single asset. Each agent 
holds a credit balance with a central credit authority. The credit balance must 
always remain above a fixed credit limit. An agent accumulates credit balances 
in good times and runs down credit balances in bad times to smooth consump- 
tion. The decision problem that an agent faces is similar to the problems studied 
by Schechtman and Escudero (1977) Mendelson and Amihud (1982), 
Sotomayor (1984) Clarida (1984), and many others. This paper differs from 
these papers by examining the general equilibrium implications of economies 
with decision problems of this type. At this stage a relatively simple explanation 
is given for why this structure generates a low risk-free rate. With a credit limit, 
agents are restricted in the level of their indebtedness. However, agents are not 
restricted from accumulating large credit balances. A low risk-free rate is needed 
to persuade agents not to accumulate large credit balances so that the credit 
market can clear. A more rigorous explanation for the result will be provided in 
section 5. To examine the risk-free rate generated by this structure, I calibrate 
the economy and characterize equilibria using computational methods. 

There has been a considerable amount of work on heterogeneous-agent 
incomplete-insurance models of asset pricing. In monetary economics, work by 
Bewley (1980, 1983), Lucas (1980), and Taub (1988) employ a similar structure to 
that used here. In other areas of economics similar structures have also been 
used. Imrohoroglu (1989) measures the potential welfare gains from eliminating 
aggregate fluctuations. Manuelli (1986) and Clarida (1990) study international 
debt markets. Diaz and Prescott (1989) study movements in the return to money 
and Treasury bills in response to monetary and fiscal policies. Taub (1991) 
analyzes the efficiency properties of money and credit in an environment with 
taste shocks. Aiyagari and Gertler (1991) study the effect of transaction costs on 
asset returns. Heterogeneous-agent models with different structures that address 
the equity and debt observations include Mankiw (1986), Kahn (1988), Ketterer 
and Marcet (1989), Marcet and Singleton (1991), Lucas (1991) and Telmer 
(1991). 

The paper is organized in six sections. Section 2 describes the environment 
and arrangement in detail. Section 3 describes the equilibrium concept and some 
theorems that will be used to compute equilibria. Section 4 describes model 
calibration and computation. Section 5 discusses the results. Section 6 concludes. 

2. Environment and arrangement 

Consider an exchange economy with a continuum of agents of total mass 
equal to one. Each period each agent receives an endowment of the one 
perishable consumption good in the economy. The endowment can either be 
high (e,,) or low (er). The set of possible endowment values is denoted E, 



M. Huggett. The risk-free rate in heterogeneous-agent economies 955 

E = {e,,, e!). Each agent’s endowment follows a Markov process with stationary 
transition probability n(e’ 1 e) = Prob(e,+ 1 = e’ 1 e, = e) > 0 for e, e’ E E that is 
independent of all other agents’ current and past endowments. Each agent has 
preferences defined over stochastic processes for consumption given by a utility 
function, 

E[ $. PW] where B E (0, 1) , 
c(l -0) 

dc) = (1 - a) where 0 > 1. 

(1) 

The arrangement investigated here allows each agent to smooth consumption 
by holding a single asset. The asset can be interpreted as a credit balance with 
a central credit authority or as a one-period-ahead sure claim on consumption 
goods. I will use the credit balance interpretation. A credit balance of a units 
entitles an agent to a goods this period. To obtain a credit balance of a’ units 
next period, an agent must pay a’q goods this period, where q is the price of 
next-period credit balances. Credit balances must always remain above a credit 
limit g, a < 0. A period budget constraint for an agent who chooses consumption 
c and next-period credit balances a’, given credit balance u and endowment e, is 

c+u’q_<u+e where c 2 0 and a’2 a. 

An agent’s decision problem will be described at a more technical level after 
setting down some notation: 
* An agent’s position at a point in time is described by an individual state vector 

x E X. x = (a, e) indicates an agent’s credit balance a and endowment e. The 
individual state space is X = A x E, where A = [a, co ), E = {e,,, el}, and 
eh > e[. 

* Let q > 0 be the constant price of credit balances each period. 

A functional equation that describes an agent’s decision problem is then: 

4-Y 4) = max u(c) + SC v(u’,e’; q) Ir(e’ ) e) , (3) 
(c,a’)ET(x;q) I?’ 

where 

r(X; 4) = {(C, a’): c + u’q 5 a -t- e; c 2 0; a’ 2 a} . 

If a bounded measurable solution u to functional equation (3) exists, then u 
is the optimal value function [see theorem 9.2 in Stokey and Lucas (1989)]. 
If u is the optimal value function, then functions c: X x R+ + + R+ and 
a: XxR++ + A are optimal decision rules provided c(x; q) and a(x; q) are 
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measurable, feasible, and satisfy 

c.(.x: 4) = u(c(x; 4)) + P C u(a(x; qhe’; @WI 4 
c’ 

(4) 

3. Equilibrium 

This section describes the equilibrium concept and some theorems that are 
used to compute equilibria. First, some background for the equilibrium concept 
is provided. Since agents will be heterogeneous in their individual state vectors, 
some way of describing the heterogeneity in the economy at a point in time is 
needed. A probability measure defined on subsets of the individual state space is 
a natural way of describing this heterogeneity. So let $ be a probability measure 
on (8, /Is), where S = [_a, ti] x E and fls is the Bore1 a-algebra. Thus, for I3 E /Is, 
$(B) indicates the mass of agents whose individual state vectors lie in I?. 

In general the price of credit balances, 4, will depend on the aggregate state of 
the economy which is given by $. So, as rl/ changes over time, the price of credit 
would be expected to change. For many questions the dynamics caused by 
changing distributions of individual state vectors are of interest. However, for 
the question at hand it is best to define a more specialized notion of equilibrium 
where the probability measure $ and the price of credit q remain unchanged 
over time. Since the question at hand concerns the average interest rate, not the 
dynamic properties of interest rates, this is a useful simplification. An important 
technical reason for concentrating on stationary equilibria is that general 
methods for characterizing equilibria of the more general kind do not currently 
exist. Therefore, this paper adopts the stationary recursive equilibrium structure 
described in Lucas (1980). To define what it means for a probability measure 
II/ to be stationary or unchanged over time, a transition function P, P: 
S x fls + [IO, 11, is needed. Intuitively, P(x, B) is the probability that an agent 
with state x will have an individual state vector lying in B next period. The 
appendix shows how to construct a transition function from a decision rule a(x) 
and transition probabilities x(e’ 1 e). Equipped with a well-defined transition 
function P, a probability measure $ defined on (S, fis) is stationary provided: 

$(B) = 
s 

P(x, B)dl(/ for all B E /Is. 
S 

Definition. A stationary equilibrium for this economy is (c(x), a(x), y, $) 
satisfying: 

(1) c(x) and a(x) are optimal decision rules, given q. 

(2) Markets clear: (i) ss c(x) d$ = js edll/, (ii) js a(x)d$ = 0. 

(3) tj is a stationary probability measure: $(B) = Is P(x, B)d+ for all B E ps. 
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A discussion of the equilibrium concept is in order. The first condition says 
that agents optimize. The second condition says that consumption and endow- 
ment averaged over the population are equal and that credit balances averaged 
over the population are zero. The third condition says that the distribution of 
agents over states is unchanging. Note that the measure II/ is defined over subsets 
of S instead of X. Thus the definition of stationary equilibria requires that 
individual agents never accumulate credit balances beyond some endogeneously 
determined level 5 Conditions under which agents optimally decide to do this 
are given in Theorem 2 below. Fig. 1 shows what is going on. This figure graphs 
the decision rules ~(a, e,,) and ~(a, el) on a 45” line diagram, where the graph of 
a(a, e,,) always lies above the graph of ~(a, el). The credit level a at which ~(a, e,,) 
crosses the 45” line is such an endogeneously determined level G. 

The following theorems will be used to compute equilibria. Theorem 1 states 
conditions under which for given q there exists a unique solution to (3), provides 
a method for computing optimal decision rules, and states properties of decision 
rules. To state Theorem 1, I define a mapping Ton C(X), the space of bounded 
continuous real-valued functions on X, as indicated below: 

(Tv)(x; 4) = max u(c) + p 1 ~(a’, e’; q) 7c(e’ I e) . (5) 
(c.a’)Er(x;q) e’ 

Use the mapping T to define mappings T”, where T1 u = TV, T ‘v = T(Tv), and 
so on. 

Theorem I. For q > 0 and a + el - aq > 0, there exists a unique solution 
u(x; q) E C(X) to (3) and T” v,, converges uniformly to v as n -+ co from any 

s 
7 -2.00 -0.01 0.39 1.58 2.70 3.97 

Credit Level = a 

Fig. 1. Optimal decision rule. 
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vO E C(X). v(x; q) is strictly increasing, strictly concave, and continuously difiren- 
tiable in a. Furthermore, there exist continuous optimal decision rules c(x; q) and 
a(x; q). a(x; q) is nondecreasing in a and strictly increasing in a for (x; q) such that 
4x;q) > a. 

Theorem 1 is proved in Huggett (1991) and is for the most part a standard 
result in dynamic programming theory. Theorem 1 requires that if an agent 
starts out with the smallest credit balance and receives the smallest endowment 
shock, then the agent can maintain the smallest credit balance and have strictly 
positive consumption. The one nonstandard step in the proof is to show that if 
v is a bounded function, then TV is a bounded function. Because the period 
utility function is not bounded below, this requires some argument. This is 
handled by showing that there is some strictly positive level (depending on v) 
that consumption will never be set below. 

Theorem 2 states conditions under which for given q there exists a unique 
stationary probability measure II/ on (S, fls) and gives a method for computing 
excess demand in the credit market. Some additional notation is needed for 
the statement of the theorem. A transition function P induces a mapping 
W: M(S) + M(S), where M(S) is the space of probability measures on (S, /Is), 
defined by 

(W$)(B) = P(s, B)dll/ for BE/&. 
s s 

Use the mapping W to define mappings W”, where W’lc/ = W$, 
W2$ = W(W$), and so on. 

Theorem 2. If the conditions of Theorem 1 hold, fl < q and n(e,, 1 et,) 2 rr(e,, ( et), 
then there exists a unique stationary probability measure rl/ (given q) on (S, fls) and, 

for any +O E M(S), W”I+!I~ converges weakly to $ as n -+ co . 

Proof: See the appendix. 

Theorem 2 is important for several reasons. First, it states conditions under 
which for given price q there exists a stationary probability measure $ (q). Since 
the definition of equilibrium requires stationary probability measures, this is 
important. Second, it states that the stationary probability measure is unique. 
Third, it offers a method to check whether (a(x; q), c(x; q), q, 1(/(q)) is an 
equilibrium. Simply pick any initial guess of a probability measure in M(S) and 
then generate the sequence of probability measures $, = W”ll/,-, described in the 
theorem. Calculate the sequence of integrals defined below: 
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Because II/. converges weakly to the unique stationary probability measure $(q) 

and because a(x; q) is bounded and continuous on S, the sequence of integrals 
converges to 

4~; 4) W(q). 

Since a version of Walras’ Law holds in this economy, an easy way to find an 
equilibrium is to search for prices q that are approximately market-clearing in 
the credit market. 

Theorem 2 is proved by applying theorem 2 in Hopenhayn and Prescott 
(1987). The proof of Theorem 2 requires two steps. First, I prove that there is 
a set S = [a, ti] x E that has the property that if an agent starts out in S, then the 
agent stays in S. This is accomplished by showing that the decision rule for credit 
balances has the shape shown in fig. 1. More specifically, it is shown that ~(a, e,) 
< a for a > a and that ~(a, e,,) has a fixed point as a function of a. These two 

facts, together with the fact that ~(a, e) is nondecreasing in its first argument, 
yield the desired result. Schechtman and Escudero (1977) prove a similar result 
for the case of independent and identically distributed shocks. They assume that 
the period utility function has an asymptotically bounded coefficient of relative 
risk aversion and that the interest rate is below the time preference rate 
(alternatively j3 < q). An additional assumption on the transition probabilities is 
used to prove the result for the Markov shock case considered here. The second 
step in the proof is to show that the conditions of theorem 2 in Hopenhayn and 
Prescott (1987) are satisfied. 

4. Calibration and computation 

I calibrate the economy following the procedures described in Lucas (1981). 
This involves using microeconomic and macroeconomic observations to set 
values of the parameters {e,,, el; rr(e,, 1 e,,), rr(e,, 1 el); /I; a; a} and the period length. 
I follow Imrohoroglu (1989) in interpreting eh and e, as earnings when employed 
and not employed. With this interpretation, I calibrate the endowment process 
to roughly match measures of the variability of labor earnings and the time 
duration in a nonemployed state. As a measure of the variability of labor 
earnings, consider the data reported in Kydland (1984).’ He calculates the 
standard deviation of annual hours worked for individual prime-age males from 
1970-1980. He finds that the standard deviation as a percentage of mean hours 

’ An earlier version of this paper used a different calibration. The calibration described here uses 
evidence on hours variability cited in Aiyagari and Gertler (1991). The results obtained with the 
current and previous calibration are similar. 
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varies from 16% for the group with the highest education level to 32% for the 
group with the lowest education level. As a measure of duration, the average 
duration of unemployment spells for men from 1948-1988 is calculated from 
data in the Handbook of Labor Statistics. The average duration is 12.3 weeks. 

When eh = 1.0, el = 0.1, ZC(Q 1 eh) = 0.925, rc(eh 1 e,) = 0.5, and there are six 
model periods in one year, the standard deviation of annual earnings as a perCent- 
age of mean for an agent is 20% and the average duration of the low endowment 
shock is two model periods or 17 weeks. The duration of the low endowment 
shock is higher than the measure cited above. However, Clark and Summers 
(1979) calculate that in 1974 26% of unemployment spells for men of age 20 and 
over ended in withdrawal from the labor force. They argue that unemployment 
duration understates the average time to reemployment. 

The discount factor fl is set to 0.99322. As there are six model periods in one 
year the discount factor on an annual basis is 0.96. The microeconomic studies 
reviewed by Mehra and Prescott (1985) estimate the risk aversion coefficient, 6, to 
be about 1.5. A range of values for the credit limit are selected, a E { - 2, - 4, 
- 6, - 8}, to examine the sensitivity of the results to different credit limits. 

A credit limit of - 5.3 is equal to one year’s average endowment. 
The procedures used to compute equilibria to the calibrated model economies 

are described next. The computation method consists of three steps: 

(1) Given price 4, compute a(x; q) using Theorem 1. 

(2) Given a(x; q), iterate on $,,+ 1 (B) = js P(x, B)dlC/, from arbitrary rjO E M(S). 
When the sequence of probability measures has approximately converged, 

use the resulting probability measure in place of $ to compute js a(x; q) d$. 

(3) Update q and repeat steps 1 and 2 until market clearing is approximately 
obtained. 

These steps are now discussed in more detail. Step 1 is to iterate on (5) from 
an arbitrary, bounded, concave, differentiable function I+,. Each iteration involves 
solving a concave programming problem. First-order conditions to the concave 
programming problem implicit in TvO reduce to 

~‘(a + e - a’q)q 2 fi C ’ ( u. a’, e’)x(e’ 1 e), with equality if a’ > a . (6) 
e’ 

Let a,(~; q) denote solutions to (6). First-order conditions to the concave pro- 
gramming problem implicit in T* v. also reduce to (6) with 
Tub(x) = ~‘(a + e - al(x; q)q) substituted in place of r&(x). This result follows 
from Lucas (1978 proposition 2). Values of a,(~; q) are determined in the same 
manner. The iterations are repeated until convergence of the decision rule is 
approximately obtained. To implement this procedure on a computer some 
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changes need to be made. First, compute ~‘(a + e - a’q) and &(a, e) on finite grids 
on X x A and X, respectively. Between gridpoints let the values of the functions be 
given by linear interpolation. Next, solve for ui(a, e) on gridpoints using (6). 
Iterate until convergence is approximately obtained.3 In summary, the algorithm 
approximates ~(a, e,,) and ~(a, e!), for fixed q, by piecewise linear functions where 
eq. (6) holds at gridpoints. In practice between 150 and 350 evenly spaced 
gridpoints are used on the set A. The gridsize is between 0.03 and 0.1 units of 
credit balances. Sufficiently many gridpoints are used so that ~(a, e) clearly crosses 
the 45” line. See fig. 1 for a typical graph of ~(a, e) on a 45” line diagram. 

Step 2 involves iterations on tin+ 1 (II) = ss P(x, E)d$,, from arbitrary initial 
1,9,, E M(S) for sets of the form B = (x E S: x1 I a, x2 = e}, where (a, e) E S and 
S = [a, a] x E. To implement this procedure on a computer, define the function 
Fo(u, e) = tjO({x: x1 < a, x2 = e}) on gridpoints. Between gridpoints let values of 
the function be given by linear interpolation. Then iterate on 

F, + I (a’, e’) = C n(e’ I e) F,(u- ‘t , e)(a’), e), 
e 

on gridpoints (a’, e’). Since a(x) may not be invertible in its first argument when 
a is chosen, define a- ’ (* , e)(a) as the maximum a such that a is chosen when the 
state is (a, e). Iterations are continued until the sequence of functions {F,(u, e)} 

Credit Level = CI 

Fig. 2. Stationary distribution. 

‘This computation procedure is similar to Coleman’s (1988) methods for computing equilibria of 
representative-agent models. 



converges. The decision rule ~(a, e) and the converged distribution function F(a, e) 
are then used to compute the market clearing condition in the credit market. See 
fig. 2 for a graph of the stationary distribution function. It is interesting to note 
that in fig. 2 almost a zero mass of agents is near the credit limit in a stationary 
equilibrium. 

The initial value of y is selected to be the midpoint of some interval of 
candidate q’s. New values are increased if there is an excess demand and 
decreased if there is an excess supply of credit balances at the previous price. The 
algorithm is therefore based on the conjecture that the excess demand for credit 
is decreasing in the price of credit. Although this has not been proven, this 
appears to be the case for all the economies examined here. The adjustment 
process is stopped after approximate market clearing is obtained. The criterion 
for approximate market clearing is that excess demand for credit balances is 
within 0.0025 units of zero. With this criterion, interest rates that are approxim- 
ately market clearing vary by less than a tenth of one percent. 

5. Results 

Tables I and 2 present the results. In the tables interest rates (r) are annual 
rates whereas prices (y) are for model periods. Also note that a credit limit (a) of 
- 5.3 is equal to one year’s average endowment. The tables illustrate a number 

of points. First, the experiments listed in the tables show that the risk-free rate 
decreases as the credit limit increases. The result has an intuitive interpretation. 

Table I 

Coefficient of relative risk aversion g = 1.5 

Credit limit Interest rate 

(cr) (r) 

-2 ~ 7.l”Gr 
-4 2.3% 
-6 .3.4 “:I, 
-x 4.0% 

Price 

(4) 

I.0124 
0.9962 
0.9944 
0.9935 

Table 2 

Coetlicient of relative risk aversion o = 3.0. 

Credit limit 

(rl) 

_. 2 
_~ 4 
-6 
-8 

Price 

(4) 

I .0448 
I.0045 
0.9970 
0.9940 
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As the credit limit is increased the interest rate must be lowered to persuade 
agents from accumulating large credit balances so that the credit market can 
clear. For a similar result in a different context see Taub (1991). Second, table 2 
shows the sensitivity of the interest rates in table 1 to changes in the coefficient of 
relative risk aversion, CJ. The higher risk aversion coefficient reduces the risk-free 
rate for all credit limits examined. This result is interesting because calibrated 
representative-agent models typically require high levels of risk aversion to get 
a large premium on equity, but this also leads to a risk-free rate that is much too 
large.4 For example, Weil (1989) shows that the risk-free rate rises from about 
5% to 18% when the coefficient of relative risk aversion rises from 0 to 20. At the 
same time the equity premium rises from 0% to 6%. 

The economy studied here can be compared to a similar representative-agent 
economy where the representative agent receives the average endowment. In 
that economy the average endowment is constant, so the risk-free rate for 
a model period is equal to the time preference rate [(l - /I)//?]. Since there are 
six model periods in a year and j? = 0.99322, the risk-free rate on an annual basis 
is 4.2%. So, in all the experiments considered, the heterogeneous-agent incom- 
plete-insurance economy has a lower risk-free rate. I prove in Huggett (1992) 
that the risk-free rate is strictly less than the time preference rate in a related 
model. An intuitive reason why the interest rate cannot be greater than or equal 
to the time preference rate is that each agent’s credit balance would diverge 
almost surely to + co _ See Mendelson and Amihud (1982) or Sotomayor (1984) 
for an analysis of this point. 

To close the section, a caveat is mentioned for interpreting the results. It is not 
known whether stationary equilibria are unique. If the excess demand for credit 
balances is continuous and strictly decreasing in the price of credit balances, 
then the intermediate value theorem would give the existence of a unique 
equilibria. These properties have been difficult to prove. However, excess de- 
mand for credit is strictly decreasing in the price of credit balances for all the 
cases considered in the tables. 

6. Conclusion 

The paper investigates why the average real risk-free interest rate has been so 
low. The main conclusion is that idiosyncratic shocks that cannot be perfectly 
insured against can generate a risk-free rate well below that of a representative- 
agent model with the same aggregate fluctuations. 

In the future it will be interesting to investigate features that were abstracted 
from here. For example, how would the introduction of capital change the 
results? One way to examine this would be to introduce a firm that rents capital 

“This result may very well be sensitive to the no-growth abstraction. 
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and labor in spot markets to produce output. Idiosyncratic uncertainty could be 
introduced by supposing that an individual’s labor endowment is stochastic. 
Agents would rent labor and capital to the firm and hold capital and credit 
balances to smooth consumption. I conjecture that in stationary equilibrium the 
return to capital and credit would be smaller than the time preference rate and 
the capital stock would be higher than the steady state capital stock in a similar 
representative-agent model. I would also conjecture that with similar credit 
limits the risk-free rate would be even closer to the time preference rate as an extra 
means to smooth consumption has been added without adding extra uncertainty. 

Another interesting feature that was abstracted from here is aggregate uncer- 
tainty. To investigate the equity premium, one must consider economies with 
aggregate uncertainty. New techniques for characterizing equilibria will be 
needed. When economists learn how to analyze those economies, it would be 
interesting to look at the distribution of asset holdings and to look at how 
consumption varies with asset returns for agents with different asset holdings. 
On this point see Mankiw and Zeldes (1990) for an interesting look at some data. 

Appendix 

A transition function on the state space S is constructed. 
Let (S, /Is) be a state space and corresponding Bore1 a-algebra. Let z be 

a random variable defined on the probability measure space (Z, Z, A). Let g be 
a function mapping S x Z into S. Define a mapping P: S x ps + [0, l] by 

P(s, B) = A( {z: g(s, z) E B}) for B E /Is . (7) 

The following lemma gives conditions under which P is a transition function. 

Lemma 5 in Hopenhayn and Prescott (1987). If g is measurable in S x Z (with the 
product a-algebra), then P described in (7) is a transition function for a Markov 
process. 

Let (Z, Z, A) be Lesbegue measure on the unit interval. Let g(s, z) = (gi(s, z), 
g2(s, z)), where 

sl(s, 4 = 4s) 

and 
g2(s, z) = e,, if (s2 = eh and z E (0, n(e,, 1 e,,)]) 

or (s2 = e1 and z E (0, n(eh 1 er)]) , 

= e, if (s2 = eh and z E (rc(e,,)e,,), 11) 

or (s2 = el and z E (rc(eh(e,), 11). 
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Note that g is measurable with respect to the product o-algebra because g2 is 
measurable by construction and g1 is measurable (S, j?s).5 

Theorem 2. If the conditions of Theorem I hold, @ < q and 7c(e,, I e,,) 2 rc(e,, ( e,), 
then there exists a unique stationary probability measure IJ (given q) on (S, /3s) and, 
for any $0 E M(S), Wn$, converges weakly to II/ as n + co. 

Proof Theorem 2 is proved in two steps. The first step is to show that there is 
a set S = [a, 51 x E that has the property that if an agent starts out in S, then the 
agent stays in S. The second step is to show that the conditions of theorem 2 in 
Hopenhayn and Prescott (1987) are satisfied. The conclusion to Theorem 2 then 
follows by applying their theorem. Theorem 2 in Hopenhayn and Prescott 
(1987) is stated below. 

Assumption I. (S, 2 ) is an ordered space. 
Assumption 2. S is a compact metric space. 
Assumption 3. L is a closed order. 
Assumption 4. (S, bs) is a measurable space and ps is the Bore1 a-algebra. 
Assumption 5. P is a transition function, P: S x Bs + [0, I]. 

Theorem 2 in Hopenhayn and Prescott (1987). If Assumptions I-5 hold, P is 
increasing, S has a greatest (d) and a least (c) element in S and the following 
condition is satisfied: 

Monotone Mixing Condition: There exists s* ES, E > 0, and N such that 
PN(d, {s: s I s*}) >&and PN(c,{s:s2s*})>~. 

Then there exists a unique stationary probability measure $ and, for any 
$0 E M(S), Wnr+GO converges weakly to ~,k as n + cc. 

For step 1 of the proof consider the following lemmas. Essentially, these 
lemmas show that the decision rule for credit balances has the shape shown in 
fig. 1. 

Lemma I. Under the conditions of Theorem 2, a(a, et) < a for a > g. 

Proof: Define functions v,(x) for n = 0, 1,2, . . . by letting Q,(X) = 0 and letting 
v, + 1(x) = TV,(X). Define functions a, + 1 (x) for n = 0, 1,2, . . . as the optimal 
setting for credit balances implicit in the mappings TV,. Show by induction that 

‘Conditions under which 9 maps S x Z into S are given in Theorem 2. The function 9, is the 
optimal decision rule a(x). Theorem 1 states conditions under which a(x) is continuous, hence a(x) 
defined on S will be measurable (S, /Is). 
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~;(a, e,,) i ~;(a, el), where it is understood that ~‘(a, e) is the derivative of u with 
respect to its first component. For n = 0 this is obvious. Suppose this property 
holds up to n. Show that it holds for n + 1. Eq. (8) below is a first-order 
condition for the maximization problem implicit in the mapping Tu,. The value 
of a’ that solves (8) for fixed x = (a, e) is a,,+, (x), 

U’(Q + e - a’q) 2 Wq)~ ’ ( u, u’, e’) n(e’ ) e), with equality if a’ > a. (8) 
e’ 

Note that the induction assumption and n(eh (e,,) 2 7c(eh 1 e,) imply that the 
right-hand side of (8) evaluated at (a’, e,,) is always less than or equal to the 
right-hand side evaluated at (a’, er). Similarly, the left-hand side evaluated at 
(a’, eh) is always less than the left-hand side evaluated at (a’, er). It follows that 
~‘(a + eh - u,+ , (a, e,,)q) I ~‘(a + e, - a,+ l(u, el)q). This completes the induc- 
tion since 0; + , (a, e) = u’(u + e - u, + , (a, e)q). 

Next, show that ~:(a, e) converges pointwise to the derivative of the optimal 
value function c’(u, e). Since ~:(a. e) = u’(u + e - u,(u, e)q), u’(u. e) = 
~‘(a + e - ~(a, e)q) and u’ is continuous, it is sufficient to show that a,(~, e) 
converges pointwise to the optimal decision rule a(u, e). It is straight forward to 
show that the argument in lemma 3.7 in Stokey and Lucas (1989) can be applied 
to obtain this result. Pointwise convergence of VA to u’ establishes that 
~‘(a, Q) 5 ~‘(a, el). The conclusion of Lemma 1 follows because p/q < 1 and 
~‘(a, eh) I c’(u, el) imply that the hypothesis to Lemma 2 below holds for e = el 
and any u* > 4. n 

Lemma 2. !f’~f(a, 4 > (P/q) E[u’(u, e’) I e] .for a 2 u* > g, then ~(a, e) -c u,for 
a 2 u*. 

ProqJI A first-order condition to an agent’s decision problem is 

u’b + e - a(a. e)q)q 2 B 1 u’(a(u, e), e’) x(e’ 1 e), 

with equality if u(u, e) > cl. (9) 

For a 2 a*, either ~(a, e) = u or ~(a, e) > u. If the first occurs, then ~(a, e) < a. If 
the second occurs, then (9), the hypothesis, ~‘(a, e) = ~‘(a + e - ~(a, e)q), and u’ 
decreasing in a imply that ~(a, e) < a. The fact that u is concave and differenti- 
able implies that D’ is decreasing in a. W 

Lemma 3. Under the conditions of’ Theorem 2, there exists an a such that 
~(a, eh) = a. 
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Proof: Suppose not. Then ~(a, e,,) > a for all a. Lemma 1 then implies that 

a(a, e,,) 2 ~(a, e,) for all a. Three inequalities follow: 

a + et - ata, e& I a + el - ah q)q, 

da, eh) - (6 - et) I 44 et), 

c(h et)lcta, ed 2 1 - (eh - d/c (4 eh). 

Note that u increasing in a and L” decreasing in a imply that 
v’(ul, e) 2 u’(uz, e) > 0 for any a, 2 a,. The fact that ~‘(a, e) = u’(c(a, e)) then 
implies that c(u, e) is increasing in a. The fact that v is bounded implies that 
c(u, e) --t 0z as a + cc. So for all sufficiently large a, 

~‘(a, edlu’ta, et) = (~(a, et)lc(a, eh)Y 2 (1 - teh - edlc@~ edY. 

Since p/q < 1, there is an u* such that ~‘(a, e,)/u’(u, eI) > p/q for a 2 a*. This 
fact and ~‘(a, e,,) I ~‘(a, e,) from Lemma 1 imply that the hypothesis of Lemma 2 
holds for e = e,,. Contradiction. n 

The previous lemmas imply that there is S = [a, a] x E such that if an agent 
starts with state x in S, then the agent stays in S. Lemma 3 shows that ~(a, e,, ) 
has a fixed point as a function of a. Choose 5 to be the smallest fixed point. 
Lemma 1 shows that ~(a, er) < a for a > _a. Thus, if an agent starts with 
x = (a, Pi) in S, then next period’s state must be in S. Similarly, if an agent starts 
with x = (a, e,,) in S, then because ~(a, e,,) I u(ti, e,,) = 5 next period’s state must 
also be in S. 

Now show that the conditions of theorem 2 in Hopenhayn and Prescott 
(1987) hold. First, define an order 2 on S. For x, x’ E S, where x = (x1, x2), 

x 2 x’ iff [(x1 2 xi and x2 = xi) or (x’ = c = (_a, e,)) 

or (x = d = (ii, e,,))] . 

This is a closed order with minimum (c) and maximum (d) elements. 
Next, define the transition function P as described earlier in the appendix. To 

show that P is increasing, Hopenhayn and Prescott (1987) prove that it is 
sufficient to show: 

x, x’ E s, x 2 x’ imply fP(x, dx) 2 
s 

fP(x’, dx) , 
S 

where 

f= xB> B=(yES:y2xforsomexinBjE/&. 
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Let B, = {zEZ: g(x,z)~B) and I?,, = {ZE Z: g(x’,z)E BJ, where g was 
defined earlier in the construction of the transition function. Show B,, E B,. 
This is obvious if g(x, z) is monotone in x for fixed z. It is straightforward but 
tedious to show that this is true. Therefore, P(x, B) 2 P(x’, B) as was to be shown. 

Lastly, show that the mixing condition holds. Choose s* = (~(a_, eh) + 4/2, 
e,,). Define a sequence x1 = a_, x 2 = a(~,, e,,), x3 = a(xz, e,,), . . and a sequence 
y, = 5,y2 = a(yI,el),y3 = a(y2,e,), . .Notethat ix”) + Gmonotonicallyand 
{y,) -+ a monotonically. Therefore, there is an N, such that an agent goes from 
cto{xES:X2s*) with positive probability in N 1 or greater steps and there is 
an Nz such that an agent goes from d to {x E S: x 2 s* } with positive probability 
in N, or greater steps. Choose N = max{ N r, N,} in the mixing condition. This 
completes the argument that the conditions of theorem 2 in Hopenhayn and 
Prescott (1987) are satisfied. n 
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