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Expectations in macroeconomics

The role of expectations

» Central difference between economics and natural sciences:
forward-looking decisions made by economic agents;

» Expectations play a key role;

» Examples: consumption theory; investment decisions; asset
prices, etc.

> The role of expectations: they influence the time path of the
economy, and the time path of the economy influences
expectations.
» Rational expectation (RE): mathematical conditional
expectation of the relevant variables;
» The expectations are conditioned on all of the information
available to the decision makers



Expectations in macroeconomics

Two examples

» Example 1. Cobweb model

de = my— mpps + vy,
e

St = n+rppy+ Vo,

S¢ = di,

where m;, mp,, r; and r, are all positive constant.

» Example 2. Cagan model

me —pr = =9 (pfr1 —pt) . P > 0.



Sources of business cycles

Some competing theories

Keynes'’s General Theory

-~ .

Non-Walrasian equilibrium Keynesian Macroeconomics Monetarism
1S-LM Model Friedman, Phelps
Hicks, Modigliani, Klein l
DSGE Macroeconomics
First-Generation New Keynesian Model Neo-classical Macroeconomics
Akerlof, Azariadis, Blanchard, Fischer, Mankiw, First. ion DSGE Model
Shapiro, Stiglitz, Solow, Taylor Lucas, Sargent, Wallace, Barro

RBC model

Second-Generation DSGE Model
Kydland, Prescott

|

Third-Generation DSGE Model

. . f Second-G ion New ian Model
A brIEf hlstory on macroeconomics theory Christiano, Eichenbaum, Evans, Ga\i,’Rotemberg, Smets,

See: Leijonhufvud, 1994 Wouters, Woodford




Sources of business cycles

News view of business cycles

> Business cycles are mainly the result of agents having
incentives to continuously anticipate the economy's future
demands.
> If an agent can properly anticipate a future need...

» If many agents adopt similar behavior...
» However, errors are possible...

» Trace back to Pigou (1927)

The very source of fluctuations is the "wave-like swings in the
mind of the business world between errors of optimism and errors
of pessimism.”

> Keynes' 1936 notion of animal spirits.
» Then what are optimism and pessimism in business cycles?

> an entirely psychological phenomenon?

» self-fulfilling fluctuations? The macroeconomy is inherently
unstable

> news view?



Concepts on difference equations

Definition
Discrete time: time is taken to be a discrete variable (integer
number, like 1,2,3...)

Definition
First-order difference is

Ayt = yri1 — v,

where y; is the value of y in the t'h period. Second-order
difference is

A2Yt =A(Ay:) = Yero — 2¥e41 + 11

Note 1: "period" - rather than point - of time.
Note 2: y has a unique value in each period of time.



Concepts

Definition
Difference Equation:

Ayt = yy1 —yr = ¢,

or
Yi41 — yr = ay: + b.

Note: the choice of time subscripts is arbitrary, i.e. it does not
make any difference if we write it as y;+1 — ¥+ = c or as

Yt+2 — Yt+1 = C.



Solving a first-order difference equation

> lterative method
» General method
Ye+1 +ayr = ¢,
The general solution y; consists of y, (particular solution) and
yc (complementary solution)

> Complementary solution: Try y; = Ab' (A is arbitrary) and

get b= —
» Particular solution: 1. if a # —1, solve y, = 55; 2. if
a= —1, solve y, = ct.
> Get y;
A(— :
e

» How about A? - Determined by yp.



Dynamic stability of equilibrium

» The significance of b:
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» Nonoscillatory (oscillatory) if b > (<)0;



Dynamic stability of equilibrium

» The role of A

> Scale effect: magnitude
> Mirror effect: sign

» Example: A market model with inventory
Qat = a — PP,

Qst = —7 + 0P,
Pii1 :Pt—U(Qst—th).
where a, B,,9,0 > 0. Solve the time path of P;.



Non-linear difference equations: qualitative-graphic
approach

Yey1 =1 (Yt) .
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Stability of Non-Linear System



Higher-order difference equations

» Second-order linear difference equations with constant
coefficients and constant term

Yet2 +a1Yer1 + a2y = C.

» Particular solution y,: the intertemporal equilibrium level of y.
» Ifa; +ay # —1, try yp = k and getk:m;
» If a; +ay = —1and a; # —2, try yp, = kt and get k = 2+Ca1;
» Ifaj+a=—1landag = -2, try yp = kt? and get k = 5.

» Complementary solution: the deviation from the equilibrium
for every time period

Yi+2 + arye41 + a2yr = 0.
Try y; = Ab' and get the characteristic equation

b2—|—a1b—|—ag =0.



Higher-order difference equations

» Case 1: two distinct real roots: a? > 4ap
Ye = Alb;{ + A2b§-

» Case 2: repeated real roots: a7 = 4a; and thus

b=b=b =2

Ye = A3bt + A4tbt.
» Case 3: complex roots: a2 < 4ay

2
4a, — a7

mzzhiWWMmh:—%aMV: .

Ye = A1b} + Agbl = Ay (h+ vi)' + Ay (h— vi)*.



Higher-order difference equations

» Because (h+ vi)" = R! (cos @t + isint) where
a

R=Vh+v2= /3, cost = = — 5% and

2
. _ v _ . aj
sinf = =11 32,0 We have

Ye = R' (As cos 0t + Ag sin 0t) .

—~

period t



Convergence of the time path

» Distinct roots

» Dominant root: the root with the higher absolute value
> A time path will be convergent iff the dominant root is less
than 1 in absolute value

> Repeated roots: if |b| < 1, we have convergence
» Complex roots:

» if R<1,ie. |bl <1, we have damped stepped fluctuation
» if R >1,i.e |b| > 1, we have explosive stepped fluctuation



Simultaneous difference equations

> Relation between higher-order difference equation and
simultaneous difference equations

Ye2 +atyeq1 +a2yr = C.
Define x; = y++1. We will have
Xt+1 T aixe +ay: = c,
Y41 = X
In matrix form, it is
G = () 6+ 6),
Yet1 1 0 Vi 0
» Simultaneous difference equations
Xi+1 = AX: + b,

where X; = (x1t, X2¢, ...xnt)/, A is a constant matrix with
coefficients ajj, i,j = 1...n, and b = (b, by, ...b,,)/.



Simultaneous difference equations

» Particular solution: x;+1 = x; = x and yi11 = yr = V;

» Complementary solution: substituting x; = mb" and y; = nb?,
we have the characteristic equation and the characteristic
roots b; and bs.

» Characteristic equation
p(b)=|A—bl|=b~Thb+D=0,

where 7 and D are the trace and determinant of matrix A.

» Moreover, we know that
T =b1+ by, D=bib,

p(b) = (b—by) (b~ by).



Stability property

Stability Triangle



Stability property

» Red line: A=T72—-4D =0

» Region above the red line: A < 0 = complex roots;
> Region below the red line: A > 0 = real roots;

> Blue lines: p(1) =1—7 +D =0 and
p(-1)=1+7+D=0

» Region above (below) the right blue line: p (1) > (<)0;
» Region above (below) the left blue line: p(—1) > (<)0;

» Green line: D=1

> Region above the green line: |b| > 1;
> Region below the green line: |b| < 1.



Stability property

Region | p (b)) b; Stability

1 p(l) <0, p(—-1)>0 |bi| <1, bp >1 | saddle

2 p(l) <0, p(-1)<0 biby <0, |bj| > 1 | explosive

3 p(l)>0,p(—-1)<0 |bi| <1, bp < —1 | saddle
p(1) >0 p(—-1)>0 o .

4 D>17T< 2 b < —1 explosive

5 A<0,D>1 |bi| > 1 explosive

6 A<0,D<1 |bi] <1 stable
p(1) >0 p(—-1)>0 _

7 D1 |bi| <1 stable
p(1) >0 p(—1)>0 _ :

8 D>1 T >2 b >1 explosive




Stability property
» Conditions for a saddle: p(1) <0, p(—1) >0or p(1) >0,
p(—1) <0

1-7T+D < 0and1+7+D>0; or
1-7+D > 0and1+7 +D <O.

Or equivalent as
|T| > |1+D|.

» Conditions for two stable roots: A <0, D <1orp(l) >0,
p(—-1)>0D<1

D<1,1-7+D>0and1+7 +D >0,

D<1land |T|<1+4+D.



Stability property

Local Uniqueness/Multiplicity

Definition
Predetermined variable: the variable whose initial value is given, as
k, h, and b;

Definition
Jump variable: the variable whose initial value is not given, as c, /,
and p (sometimes).

Theorem

Conditions for local uniqueness/multiplicity:

1. If the number of stable roots = the number of predetermined
variables = Saddle path (Determinacy);

2. If the number of stable roots < the number of predetermined
variables = Source (Explosive);

3. If the number of stable roots > the number of predetermined
variables = Sink (Indeterminacy).



Solve for the recursive law of motion with method of

undetermined coefficients.
State variables: k;_1, 2,
The dynamics of the model should be described by recursive laws
of motion in terms of the state variables,

ki = Vikke—1+ Vi 2e,

Gt = Vekke—1+ Ver2:.

We need to solve for vy, Vkr, Ver and v, the "undetermined"
coefficients.

Coefficient interpretation: elasticities.

Recall: the log-linearized system consists of

~ 1. C. 5.
ke = Bkt_l - ?Ct + @ztv

O'Et@‘t+1 —‘Fg(]. - 0() /}t _gEt2t+1 - (7?.},

Zy = lpétf]_ + &;.



Recursivity

> Substitute the postulated linear recursive law of motion into
the dynamic equations until only k;—1 and Z; remain. E.g.

Et2ip1 = P2,
Eierr1 = Ei(Vekke 4+ Vez2e41)

= Vek (kaf(tfl + Vie2t) + Ve P2

= VekVikkt—1 + (Vek Viz + Ve P) 2t

» Compare coefficients.



Recursivity
For the first equation (budget constraint)

; 1, c, o,
ke = Bkt_l - ?Ct + @zt,
. .1, T, 5.
kakt_l + VkzZe = Bkt—l - ? (Vckkt—l + chzt) + @Zt:

1 C . 5 C X
- — = Vek — Vkk t—1 — — = Vez — Vikz | Zt = U.
E K keoq + 6K 0

Comparing coefficients: since the equation has to be satisfied for
any value of k;—1 and Z;, we have

Vek

X|‘ (@

R 1
for ki1 Vik = — —
p
5o

for 2; Vig = — — =V
o K



Recursivity

For the second equation (Euler equation/asset pricing)
0Ei&41+0(1—a)Eks — 0211 = 0,

0 [Vekvikke—1 + (Vek iz + Ver ) 2] +6(1—-a) (Vike—1 + vio2t) -

= 0 (Vck/;tfl + chft) )

TVekvik +0 (1 — @) ka—U'Vck] ket +

[
[U Vck Viz + chll]) + 5 (1 - a) Vkz — 51/1 UVCZ] 2
0.

Comparing coefficients, we have
for /;t,1 : OVck (]_— ka) :5(1—06) Vikk

forzy : ov,(1—9y)= [UVck +0(1— 1)&)} Viz — 01



Comparing coefficients

Collecting the results, and comparing coefficients on k;_1,

O Vek (l—vkk) :5(1—06) Vik (].)
1 C
Vkk = B 7 Vek- (2)
To solve vix, we substitute v, and obtain a quadratic equation
1 0(1—a)C 1
V,?k— 1+,3_( p )R ka—f—B:O.




Solving the quadratic equation

1
5

0 = vig — Yvkk +

where

1 sl 1-[1—(1-a)d]B
7_1+B+ o ap '

The solution is a high school math problem:

w3

Why we delete the root

G- 5




Solving the quadratic equation

(vikk — M) (vik — A2) = 0,
VE — (M +A)vik +AA = 0,

1
/\1)\2 = —>1,
B

1
AM+Ady = y>1+ B
hence, A1 + Ay > 14 A1y,

(1—/\1)()&2—1) > 0.

so A1 and A; both positive, one root > 1, and the other root < 1.
We need to delete the explosive solution!



Solving the quadratic equation

Once vy is solved, the others can be solved easily.
Plugging it into equation (2),

Vek = ({jﬁ —5> (’113 — Vik ),

we get veg.



Solving the quadratic equation

Then for coefficients on 2;

Ve (1— 1) = [avck +0(1— tx)} Viz — O, (4)

Ve 40 (1 — ) — afp z
c(l—y)— [chk —|—5(1—1x)} ((5— %) ap’

Vez =

where v, is known. Substituting v, into (3), we solve vg,.



Solving the quadratic equation

We could obtain

ke = vikke—1 + vie 2,
& = Vck/;t—l + Ver 2e,
2 = Yz 1 +¢&,
where
N VA R ) YE .
Vik = 5 > B Vek = B B Vik )
- Ve +0 (1 —a) —afy B
cz — -

o(1—y)— [avck+5(1—a)} (5_ %> ap’

Vkz = 5—z v, —l—z
kz — “ﬁ cz aﬁ'



Calibration and simulation

Assuming quarterly data with

B =0.99
c=1.0
Z=1

Then we get...

& = 0.36
5 =0.025
$ =0.95



Calibration and simulation

» Impulse response analysis: trace out all variables for 1 = 1,
g = 0 for t > 1, when starting from the steady state.

» Because
2 = 1/727:—1 + &,
we have
21 =92 +e =gy,
2 = P21 + ey = ey,
a8 —1
Zj = IP/ €1.
and

ki = Vikko + Viz21 = viz€1,

ko = Vikki + Viz2o = VkkViz€1 + Ve Pe1r = (Vik + 1) Viz€1,

j—1

/A(J' = ka/Agfl + szgbjflsl = 'Z() (v/ik(pjfifl) Vikz€1-
=



Calibration and simulation

Impulse response functions

Impulse responses to a shock in technology

1.2
1 ‘ agy
[¢]
8 T~
g 0.6 :: - S
= :: A..——ee-nsumpmn\§
£ 04 | e
3 e
é 0.2 /
a I /
0 Lre&um_
-0.2
1 0 1 2 3 4 5 6

Years after shock



Calibration and simulation

Baseline model vs.
o =100

Does not change steady states.

1) vkk T due to risk aversion, consumption smoothing, lower
intertemporal elasticity of substitution

2) vk, | less sensitive to technology shock to better smooth
consumption



Calibration and simulation

Baseline model vs.
=0.1

Reduce steady state size of the economy dramatically due to
higher depreciation rate.

K Y C
6=0.025|38 37 275
6=0.1 64 195 13

1) vikx | due to higher depreciation rate
2) vk, T due to less stock of capital and higher MPK. So return
and output both respond more proportionally.



Solve with Toolkit 4.1

The structure of the problem.

There is an m x 1 endogenous state vector x;, an n X 1 vector of
other endogenous variables y;, and a k X 1 vector of exogenous
stochastic processes z;. The equilibrium relationships between
these variables are fully characterized by the list of equations we
just collected after log-linearization. We can cast these equations
into three blocks:

Axt + Bxt—1 + Cy; + Dz;
0 = Ei[Fxer1+ Gxe + Hxe—1 + Jyey1 + Kye + Lze1 + Mz,
ze = Nzi1+e€r1; Elery1] =0

where C is of size | X n, [ > n and of rank n, K is of size
(m+n—1)xn, and N has only stable eigenvalues. In total there
are m+ n+ k equations.



Solve with Toolkit 4.1

Recursive law of motion

Xt = Pxt—1+ Qz
yr = Rxt-1+ 5z
zz = Nzi_1+e€;

Solutions: matrix quadratic equation.

Execute with Toolkit 4.1.



Solve with Toolkit 4.1

Cast the log-linearized equations into the system.

An m X 1 endogenous state vector x, {IAQ} .
An n x 1 vector of other endogenous variables y:, {&, 7, 9+ } .
A k x 1 vector of exogenous stochastic processes z;: {2;} .

Fe=[1—B(1—=0)] [2:— (1 — a)ke—1]
¢ = %21“ + %Ri(t—l — Kk,

=X

Vi =2+ wke 1
0=E:[0(& — &+1) + Prya]

2 = 1/727:—1 + &

A N



Solve with Toolkit 4.1
Cast these equations into three blocks

1) The first block

O = AXt- + BXt-f]_ + CYt + DZt

0 = [1-pL-9)2—[1-B1L—8)] (1 a)ke1— 7

0 = z+ak1—
2) The second block

= Ei[Fxe41 + Gxe + Hxe—1 + Jyey1 + Ky + Lzep1 + Mz
0 = E[0(& — &+1)+ Pesa]

3) The third block zz = Nz;—1 + €;+1; Et[€r+1] =0

2 = ll)%t—l + &



RBC models with sunspot equilibria

» Factor-generated externalities (Farmer and Guo, 1994, JET,;
Wen, 1998, JME)

Y: = ZKEANE and Z, = z Ko N YT

where K;_1 and N; are the social average level of capital and
labor inputs.

» Taxation (Schmitt-Grohe and Uribe, 1997, JPE)
Ki=(1—1¢) weNe + e Ke + (1 = 0) Ki—1 — G,
and the government holds balanced-budget rule as
G = Tiwi N,

where G is a constant.
> More references see Benhabib and Farmer (1999).
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