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Abstract

Two empirical regularities of bank lending policies stand out: both interest rate spreads on loans

and lending standards become lower during booms than in recessions. I develop a repeated

game model of bank competition to explain these two facts, stressing procyclical competition of

the banking sector as the driving force. Facing private information on borrowers, banks compete

by choosing both the interest rates on loans and the lending standards, which are identified

with the screening intensities used in the costly screening process. Over time, aggregate shocks

affect a bank’s payoff. In the equilibrium, better business conditions during booms increase

bank’s incentive to deviate ceteris paribus, thus forcing banks to compete more to shrink the

profit margin and to restore the equilibrium incentive constraint. As a result, banks charge

lower interest rates and impose looser standards during booms, while the opposite happens

during recessions.
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I Introduction

A consensus among economists has emerged in the aftermath of the recent subprime crisis. The

excessively lax mortgage lending standards used by banks and other types of lenders in the years

preceding the crisis made too much credit be extended to borrowers whose ability of repaying

debt was highly problematic. The resulting tremendous volume of credit flowing into the housing

market helped fuel the historic housing boom, and the feedback effect of rapid appreciations in

housing value in turn masked most of the unsound lending practices until the eruption of the

crisis. Despite the consensus on the central role of the lax lending standards in paving the way for

the crisis, there are still a lot of debates on why the lending standards became so low before the

crisis.

To better understand the mechanisms of the relaxation of the lending standards before the crisis,

I take one step back by focusing on the dynamics of bank lending polices over the business cycle.

There are two empirical regularities concerning the bank lending dynamics: both the interest rate

spreads on loans and the lending standards are lower during booms than in recession, i.e., bank

lending polices are countercyclical.1 I develop a model to study the dynamics of bank lending

policies, including both the lending standards and the interest rates on loans, over the business

cycle. By considering an environment in which the banking sector is imperfectly competitive, I

allow bank competition to drive changes in the lending policies over time. I argue that competition

matters a lot for the determination of the bank lending polices. Indeed, the model generates

endogenous, procyclical bank competition, which in turn leads to countercyclical lending polices:

as banks compete more during booms, they reduce the interest rates on loans and relax the lending

standards.

In the baseline framework, a given number of symmetric banks and a continuum borrowers

play a lending game in each period, and the lending game is repeated over time. Facing private

information on a borrower’s creditworthiness, banks rely on a costly screening technology to

distinguish good borrowers from bad ones by choosing the screening intensities used in their

screening processes.2 The screening intensity determines the precision of the signal obtained on

1For the dynamics of interest rate spreads, see, e.g., Bernanke and Blinder (1992); for the dynamics of the lending

standards, see Asea and Blomberg (1998), Berger and Udell (2004), and Lown and Morgan (2006).

2As noted by Rajan (1994), the lending standards reduce to the simple NPV rule and hence remain constant whenever

information is perfect. In view of this, some form of asymmetric information is necessary for a meaningful discussion

of variations in the lending standards.
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a borrower in the screening process, and I identify a bank’s lending standards with its screening

intensity. Based on the signal obtained in the screening process, a banks makes the lending decision

on any borrower it faces. Meanwhile, banks also choose the interest rates on the loans extended

to the approved borrowers. I show that only pooling equilibrium exists in the lending game.

Moreover, for a given level of the interest rate on loans, a bank chooses the screening intensity

optimally. The resulting efficient screening intensity varies positively with the interest rate, as

higher interest rate implies higher profitability on loans. This result provides an underpinning of

the positive correlation between the two components of the bank lending policies.

There are three types of aggregate shocks affecting a bank’s payoff over time: a pure quantity

credit demand shock, a collateral value shock, and a risk distribution shock. These shocks cap-

tures different aspects of business cycle fluctuations. Building on a series of preliminary results

established for the lending game, the repeated game is highly tractable even with the presence

of the aggregate shocks so that I can analytically characterize the optimal symmetric subgame

perfect equilibrium. As in the seminal work of Rotemberg and Saloner (1986), for a range of values

of banks’ common discount factor and the number of banks, the optimal equilibrium displays

following feature: banks compete more during booms in the sense that the forgone profit of the

banking sector is higher during booms than in recessions. The underlying intuition is quite simple.

For all three types of aggregate shocks, a higher shock realization during booms increases a bank’s

payoff, hence its incentive to deviate, ceteris paribus. Banks therefore need to compete more to

reduce the prevailing profit, for otherwise the equilibrium incentive constraint will be violated.

Putting differently, bank competition is procyclical along the equilibrium path.

Procyclical competition translates into time-varying bank lending policies. For all three shocks,

more competition during booms forces banks to charge lower interest rates, resulting in lower

interest rate spreads as the risk-free rate is normalized to zero. Thus banks’ interest rate policy is

always countercyclical. The equilibrium dynamics of the lending standards has a more delicate

structure. For the case of the credit demand shock, the equilibrium screening intensity becomes

lower during booms unambiguously. As the shock is purely quantitative and does not affect the

unit payoff of a loan, a lower interest rate during booms leads to a lower screening intensity. In

contrast, both the collateral value shock and the risk distribution shock increase the profitability

of a loan during booms, ceteris paribus, and the increase may not be more than offset by a

lower equilibrium interest rate, thus the equilibrium screening intensity may not be lower during

booms. However, I can still prove that under some additional parametric restrictions, equilibrium
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screening intensity becomes lower during booms. In sum, for all three types of aggregate shocks

and a wide range of parameter combinations, procyclical competition results in countercyclical

lending policies. This conclusion is robust to various modifications of the basic framework.

In the rest of the introduction, I review related literature. In Section II, I lay out the basic

model setup. In Section III, I establish a series of results for the lending game within each period.

In Section IV, I characterize the equilibrium dynamics of the model. In Section V, I discuss the

robustness of the basic model framework and check the welfare implications of the model. The

proofs of all results in the main text are relegated to Appendix A; the supplementary results that

require lengthy discussion are collected in the Online Appendix.

Related literature This paper contributes to the literature of bank lending and competition in

several ways.

The first contribution is on the modeling of the stage lending game. I model the lending

process as an extensive form game with incomplete information. As the uninformed party, i.e.,

banks, move first, the game has the flavor of a signalling game, supplemented with a third stage

in which banks can reject borrowers based on the screening results. In this regard, the model is

closely related to the models of Hellwig (1987) and Hillas (2002).3 A major difference between

my work and theirs is that these authors rely on the stability refinement of Kohlberg and Mertens

(1986) for obtaining a pool equilibrium, whereas I establish directly that only pooling equilibrium

is possible and rely on the undefeatedness criterion of Mailath et al. (1993) to get a fairly reasonable

equilibrium of the lending game. By explicitly assuming that borrowers are privately informed,

this paper also differs from a number of works in which the information is imperfect but neither

borrowers nor banks are informed a priori.4

A large number of works in bank competition follow the path-breaking paper of Broecker (1990)

in modeling the screening and pricing process, which makes the model resemble a common-value

auction model as a borrower applies for credit from every bank and each bank’s signal about the

3After I obtained all the main results, I came across the unpublished work of Hillas (2002) which has a very similar

setup as the stage lending game in this paper. Hillas’ setup differs from mine in an important way that the screening

intensity is not variable but given exogenously at a constant cost.

4See Manove et al. (2001) and recent works by Burke et al. (2012) and Wang (2015). This alternative information

structure circumvents a major difficulty caused by the strategic interactions between informed borrowers and unin-

formed banks. Arguably, assuming borrowers have private information gives more binds for the notion of the lending

standards as identified by the screening intensity.
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borrower is imperfectly correlated.5 However, the discreteness of the signal on each borrower

leads to the existence of mixed strategy equilibrium only,6 which represents a major difficulty in

doing comparative static analyses and in extending the model to the dynamic case. In contrast,

following the signalling game literature, I impose the exclusivity assumption that a borrower can

apply for credit from only one bank in each period, and this guarantees the existence of pure

strategy equilibria,7 which helps for the tractability of the dynamic model. As I argue below, this

is not a restrictive assumption for the model economy, and is perhaps a more realistic way for

modeling the lending process.

The second contribution is on the dynamics. To my best knowledge, this paper is the first one

to develop of a tractable repeated game model of bank competition in which banks choose both the

interest rates and the lending standards with the presence of the aggregate shocks.8 This allows

a rigorous study of the jointly endogenous dynamics of bank competition and lending policies

over the business cycle. As already argued, the framework developed in this paper gives rich and

sharp predictions on the dynamics of the banking sector, many of which can hardly be obtained

in a static framework.

II The Model

Time is discrete and infinite. There are N < ∞ symmetric banks and a continuum of borrowers,

indexed by i ∈ N ≡ {1, . . . ,N} and j ∈ [0, 1]. Both are risk-neutral and infinitely lived. In every

period t, borrowers seek credit from competing banks in a credit market.

5See the subsequent work of Cao and Shi (2001), Ruckes (2004), and Hauswald and Marquez (2003, 2006).

6When the signal is continuously valued, existence of a purely strategy equilibrium is restored. See Riordan (1993).

Yet the equilibrium strategy is still a complicated function of the signal.

7Notably, Thakor (1996) modifies the extensive form structure of Broecker (1990) in a way to make the model admits

a signalling game structure and proceeds to obtain pure strategy equilibrium.

8There are prior works on dynamic bank competition. Bagliano et al. (2000) and Chami and Cosimano (2001, 2010)

are among the first to model bank competition as using repeated games, yet they rely on a reduced form demand

function and do not model the lending process, thus the lending standards. Gorton and He (2008) propose a repeated

game of bank competition with screening, yet their model is left unsolved due to tractability issue. Gehrig and Stenbacka

(2004, 2011) also construct a dynamic model of bank competition with screening. However, their model is deterministic

where as my model features stochastic aggregate shocks. More importantly, there is no direct strategic interactions

among banks (they call financiers) as banks are randomly matched with borrowers (they call entrepreneurs); and banks’

actions affect one another only indirectly through the change of borrower composition over time. Corbae and D’Erasmo

(2013, 2014) develop quantitative models of banking industry dynamics, yet the banks in their models do not choose

the lending standards directly.
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II.A Borrower and Project

At the beginning of time t, each one of ex ante identical borrowers is hit by an idiosyncratic

investment opportunity shock θ, taking one of two values in
{
θg , θb

}
⊂ [0, 1] with Pr(θg) � µ̄ and

Pr(θb) � 1 − µ̄. IdentifyΘwith {g , b}, indicating “good” and “bad”; hence a borrower can be one

of two types. Investment shock is iid across borrowers and over time, so that the proportion of

good borrower is always µ̄. Coming with shock θ is a one period investment project. For one unit

investment, a θ project produces x units perishable output when succeeds, with probability θ, or

c units when fails, with probability 1 − θ, where 0 ≤ c < 1 < x. The random output is iid over

projects. All projects are indivisible and have a common size z, so a project either can not start or

receives an investment z and produces zx or zc units of output.

By normalizing economy-wide risk free rate to 0, the expected net present value of a θ project

is NPVθ � θx + (1 − θ)c − 1. Distinction between good and bad project is that NPVg > 0 > NPVb ,

hence good borrower is creditworthy while bad borrower is not. This is part (i) of the following

assumption.

Assumption 1. (i) θg > (1 − c)/(x − c) > θb , and (ii) 1 > µ̄ > θb/(θg + θb).

Part (ii) simply states that the proportion of good borrowers can not be too low.

The realization of θ to a borrower is private information. Banks do not know individual

borrower’s type; yet its distribution, together with other parameters of the model, is common

knowledge to both banks and borrowers.

II.B Financing and Screening

Borrowers receive no endowment, neither do they possess a storage technology which transforms

previous period surplus into current period resource. As a result they rely on bank lending to

finance their projects. All borrowers are protected by limited liability, so that lending to bad ones

can never be profitable as NPVb < 0. In addition, borrower’s type is private information, therefore

banks have incentive to screen out bad borrowers before extending credits. Each bank owns a costly

and noisy screening technology, namely creditworthiness test, which can generate information on

borrower’s type. This technology is symmetric across banks and works as follows.

For any borrower applying for credit from a bank, a test with screening intensity q ∈ Q ≡
[ 1

2 , 1
]

generates a random signal ϕ ∈ Φ ≡ {G, B} satisfying

Pr(ϕ � G |θ � g) � Pr(ϕ � B |θ � b) � q.
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By Bayes law, posterior probabilities Pr(g |G) and Pr(g |B) are

νG(q , µ) ≡
qµ

qµ + (1 − q)(1 − µ) and νB(q , µ) ≡
(1 − q)µ

(1 − q)µ + q(1 − µ)

for an arbitrary prior 0 < Pr(g) � µ < 1. An important element of this model is that q is chosen by

the testing bank at an upfront cost zC(q), where the assumptions on the unit cost function C(q) will

be introduced below. Intensity q fully determines the accuracy of a test: the higher q, the higher

νG(q , µ) and a better signal G as for g. In this way, it helps the bank to determine the statistical

creditworthiness of a borrower so that the lending decision of approval or denial may be made

conditional on test result ϕ.

II.C Loan Contract

Banks post loan contracts for which borrowers apply. The general form of a loan contract is

l � (r, λ, q), where q denotes screening intensity. Ex post screening and upon approval, a one

period loan of size z with terms given by (r, λ) is granted, where r is the (gross) interest rate to be

repaid when a borrower is solvent and C is the collateral value seized by bank in default. Limited

liability implies that r is bounded from above by x. Moreover, banks have access to perfectly elastic

supply of funds at zero risk-free rate, so that r is bounded from below by 1.

Given r ∈ [1, x], a θ borrower defaults if and only if the project fails. Limited liability then

implies λ ≤ c, so that without loss of generality I focus on loans in the form (r, c), or simply r,

ex post of screening.9 Thus upon approval, expected payoff from a unit loan r to a θ borrower is

uθ(r) � θ(x − r) ≥ 0 to the borrower and ηθ(r) � θr + (1 − θ)c − 1 to the bank. It follows that

ηg(r) > ηb(r), and ηb(r) < 0 ∀r ∈ [1, x]. Since ηg(x) � NPVg > 0 and ηg(1) < 0, there is a unique

r > 1 such that ηg(r) � 0. Evidently, no bank will offer a loan with r < r. Let R ≡ [r , x], and let

C� R× Q denote the contract space, with l� (r, q) ∈ Cdenoting a generic loan contract.

I assume that each bank i offers only one contract li ∈ C at the beginning of each period.

This is with out of generality as I show below that the unique equilibrium in this framework is a

pooling equilibrium in which every bank offers the same contract. Let L � {l1 , . . . , lN} denote

the set of loans available in the market during each period, and let l � (l1 , . . . , lN) denote the

corresponding vectorization.

9For any loan (r, λ) ∈ [1, x] × [0, c] satisfying θr + (1 − θ)λ − 1 ≥ 0, there is an r′ ∈ [1, x] such that (r′, c) replicates

payoffs to both the bank and the borrower as they are both risk-neutral.
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distributed
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Figure 1: Timeline within a period

II.D Lending Game within a Period

Timing After the realization of θ at the beginning of time t, borrowers and banks meet in the

credit market and take actions in the following order:

1. All Banks post loans simultaneously and publicly.

2. Each borrower selects one loan l ∈ L to apply for. If the loan is offered by multiple banks,

the borrower randomly picks one bank.

3. Seeing a borrower at a loan l� (r, q), the bank screens the borrower at intensity q paying cost

zC(q) and makes lending decision of approval (A) or denial (D) after observing test result ϕ.

If the bank approves the application, then the borrower receives a loan of size z at interest rate r

for investment, and payoffs are distributed to both the borrower and the bank at the end of time

t. If a loan application is denied by the bank, then the borrower needs to wait until next period to

apply again. The timeline within a period is illustrated in Figure 1.

By posting loan contracts in the form of l� (r, q), banks effectively commit to both interest rate

and screening intensity. This also makes explicit that banks have two choice variables, r and q,

where q corresponds to lending standard (see discussion in the next Section). Accordingly, when

selecting a loan, borrower also takes into account effect of q on the probability of approval. That the

loan granted upon approval is of size z means that one investment project can be financed by one

bank through one loan, thus multiple creditors are not allowed. This is consistent with my focus

on lending to relatively small borrowers and on loans of relatively small size.10 The assumption

10Household loans (mortgage, auto and consumption loans) and loans to small business are almost always financed

and managed by a single lender. The average size of commercial and industrial loans, including those to large and
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that each borrower applies for only one loan during a period tends to capture the reality that loan

application/screening is a nontrivial process, which requires considerable time and effort from

both borrowers and banks. Although this exclusivity assumption is a standard one in the literature

of adverse selection with screening/signaling,11 I relax it in Section V.C to check the robustness of

the model.

A Game-Theoretic Formulation In each period, the timing of the lending process, in together

with information and payoff structure, determines an extensive form game with incomplete infor-

mation, which I call the lending game henceforth.12 I shall analyze this lending game in the next

Section, using sequential equilibrium of Kreps and Wilson (1982) as the solution concept. Since

banks post loan contracts L simultaneously and publicly, the subsequent lending process consists

of a proper subgame of the lending game, and any sequential equilibrium is thereby subgame

perfect. As a result, equilibrium payoff of bank i can be expressed as a function of the contract

offerings lt by all banks at the beginning of time t, which serves as i’s profit function Πi(lt ; st) in

the repeated game among the N banks. The second argument in the profit function denotes the

aggregate shock affecting the economy at t, on which I turn to discuss next.

II.E Dynamic Setup

At the beginning of each period, before credit market opens, an aggregate shock st hits the economy.

The shock shifts parameters of the economy and is public information, so that both borrowers and

banks may condition their strategies on its realization. I specify the precise form of this shock in

Section IV; for now, it suffices to assume that st lies in a compact subsetSof some finite dimensional

Euclidean space Rd and follows some stochastic process. Since st is payoff relevant, it enters into

bank’s profit function Πi(lt ; st).13

medium firms, is about 1 million over 1997 to 2013 and is very often financed and managed by one bank. In contrast,

the average size of a syndicated loan with multiple lenders is more than 300 million (Sufi, 2007).

11See, e.g., seminal papers by Rothschild and Stiglitz (1976), Wilson (1977), and Riley (1979). One clarification:

“screening” in this literature typically refers to separating different types of agents through designing incentive com-

patible contracts by the uninformed party (Stiglitz and Weiss, 1990), which differs from “screening” as an information

production technology in this paper (and the literature on bank screening more generally).

12In particular, this is a three-stage game with a similar structure to the one analyzed in Hellwig (1987). See also

Grossman (1979) for a similar timing structure without a good-theoretic formulation.

13There are 6 payoff relevant parameters: x, c, θg , θb , and z for individual project payoff; and µ̄ for project/borrowre

type distribution. In principle, screening cost function C(·) may also shift over time, yet I do not consider this possibility

here.
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Conditional on st , borrowers and banks play the lending game at t; thus over time, the credit

market interaction is described by a repeated game with aggregate shock, of which the one period

lending game becomes the stage game. What simplifies the analysis is that borrower’s type is iid

over time and storage by borrower is not feasible, therefore borrower’s decision problem is a static

one. Given lt , once borrower’s action is determined in the lending process (as a subgame) of the

stage lending game, bank i’s profitΠi(lt ; st) is determined. As a result, the repeated game reduces

to a game where N banks compete with each other for the market share of borrowers over time by

choosing li
t , conditional on the entire history up to t, taking Πi(·) as the relevant stage payoff.

I proceed to analyze the stage lending game first and derive the profit function Πi(·), after

which I analyze the repeated game and characterize credit market dynamics.

III Stage Lending Game

Suppose that, at the beginning of current period, a realization of the aggregate shock s becomes

public information which pins down all payoff relevant parameters of the economy. Then the

credit market opens and the market outcome is determined in a sequential equilibrium of the stage

lending game between borrowers and banks. In a sequential equilibrium, there is a common belief

system µ(l), ∀l ∈ L, about the probability of good type when a bank sees a borrower applying for

a loan l, such that the strategy profile of banks and borrowers consists a Nash equilibrium and the

belief system µ(·) is consistent with the strategy profile. More specific, bank i’s strategy has two

parts: choice of a loan li ∈ C to offer and lending decision A or D for each borrower approached

under belief µ(·). And strategy of either type of borrowers is simply choosing loans l ∈ L to apply

for. Also, banks and borrowers can use mixed strategy.14

In the rest of this Section, I analyze sequential equilibria of this lending game in the backward

order: bank’s lending decision first, followed by borrower’s choice, then a characterization of

efficient contracts, i.e., contracts with optimal screening choice, and lastly bank’s profit function.

III.A Lending Decision

Consider that a borrower applying for a loan l � (r, q) ∈ C offered by a bank. Let µ � µ(l)
denote the prior belief of the probability of having a good borrower. When µ � 0 or 1, bank’s

lending decision is trivial: denial in the first and approval in the second case. When 0 < µ < 1

and screening intensity is q, posterior belief of a good borrower equals to νϕ(q , µ) conditional on

14I consider only symmetric strategy among borrowers of the same type, where mixed strategy is allowed.
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receiving test result ϕ ∈ Φ.15 Accordingly, the expected payoff from a unit loan with interest rate r

to a ϕ borrower is

ηϕ(l, µ) � νϕ(q , µ)ηg(r) +
(
1 − νϕ(q , µ)

)
ηb(r).

As bank moves last in the lending game and screening cost becomes sunk cost by then, bank’s

lending decision is the simple NPV rule: approval if ηϕ(l, µ) ≥ 0 and denial if ηϕ(l, µ) < 0.

Following lemma shows the outcome of bank’s lending decision conditional on test result ϕ.

Lemma 1. For a given loan l � (r, q), either one of three cases happens: (i) bank approves both G and B

borrowers; (ii) bank approves G while denies B borrowers; or (iii) bank denies both G and B borrowers.

The proof is in Appendix A (p.41). Roughly speaking, ηG and ηB are either both positive when

bank’s prior µ is close to 1 or both negative when µ is close to 0, whereas for interim values of µ,

ηG > 0 > ηB.

III.B Borrower’s Choice

Let pθ(l) denote the approval probability of a θ borrower at loan l� (r, q) with prior belief µ(l).
A direct implication of Lemma 1 is that pθ can be of three cases: (i) p g � pb � 1; (ii) p g � pb � 0;

or (iii) p g � q and pb � 1 − q. The last follows because the probability of getting a G signal in

screening is q for a g borrower and 1 − q for a b borrower.

Fix the set of loan offers L by all banks where L contains at least two loans, and consider the

subgame, i.e., stage 2–3. Any sequential equilibrium of the lending game is subgame perfect in

this subgame. In particular, given the belief system µ(·) and bank’s lending decision based on µ(·),
a θ borrower chooses loans in stage 2 so as to maximize the expected payoff, i.e., maxl∈LUθ(l),
where

Uθ(l) ≡ uθ(r)pθ(l) � [θ(x − r)]pθ(l)

and l � (r, q). Furthermore, borrower’s choice needs to be consistent with the belief system such

that if g borrower chooses lwith probability α and b borrower chooses lwith probability β, then

µ(l) � αµ̄/[αµ̄ + β(1 − µ̄)].
If Land µ(·) is such that approval probability pθ(l) � 0∀l ∈ Land θ ∈ Θ, then there will be no

active lending in equilibrium.16 To focus on economically interesting cases, I introduce following

15Since I do not exclude a priori the possibility of mixed strategy adopted by borrowers when L contains more than

one loans, µ can take any value in [0, 1]. Otherwise, µ can take only three values: 0, 1, and µ̄.

16If µ̄NPVg
+ (1 − µ̄)NPVb < 0, a possibility I do not exclude, and q ≈ 1/2, µ(l) ≈ µ̄ ∀l � (r, q) ∈ L, then no bank

finds it profitable to lend.

11



definition.

Definition 1. An active lending equilibrium is a sequential equilibrium in which pθ(l) > 0 for

some θ ∈ Θ and l ∈ L.

Evidently, in an active lending equilibrium, p g(l1) must be positive for some l1 � (r1 , q1),
whereas it may happen that pb(l1) � 0 as q1 � 1. Subsequently, I only look at active lending

equilibria.

In principle, there may exist three types of equilibrium outcome in the subgame. In a pooling

equilibrium, both types of borrowers choose the same loan; in a separating equilibrium, two types

of borrowers choose different loans; and in a mixed equilibrium, at least two loans are selected

with positive probability by one type of borrowers, and at least one of them is selected by both

types. The next lemma asserts that only pooling outcome is possible.17

Lemma 2. Suppose r < x and 1
2 < q < 1 ∀l � (r, q) ∈ L. Then only pooling equilibrium outcome is

consistent with an active lending equilibrium.

The proof is in Appendix A (p.41). Outcome in the subgame other than the pooling one may be

consistent with an active lending equilibrium when some loan contract in L lies on the boundary

of contract space C. Imposing r < x as a condition is only for technical reason, i.e., ensuring

borrower’s payoff to be strictly positive whenever approved. This condition can be dropped if I

modify the setup slightly such that a borrower enjoys some positive control rent whenever his

investment is funded.18 Loans with q �
1
2 correspond to no effective screening, whereas q � 1

means perfect screening. Neither case is at odds with the basic premise of this paper that bank’s

screening is nontrivial but not perfect. Moreover, I demonstrate below that 1
2 < q < 1 in any active

lending equilibrium.

III.C Efficient Screening Intensity

Lemma 2 makes clear that equilibrium outcome in the lending process subgame can only be

pooling. As a result, belief is fixed at µ(l) � µ̄ for any loan l ∈ L selected by borrowers in an

active lending equilibrium. As a result, bank’s payoff from a unit loan l � (r, q) to a ϕ borrower

17 Critically, the non-existence of mixed equilibrium outcome depends on the presumption that banks choose approval

whenever ηϕ(l) � 0, in particular ηB(l) � 0. If banks can randomize between approval and denial when ηB(l) � 0,

then it is not hard to construct mixed equilibrium outcomes.

18Such control rent is private payoff and is not contractible.
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simplifies to ηϕ(l) ≡ ηϕ(l, µ̄). Whenever borrowers select a loan l � (r, q) in equilibrium, bank’s

unit payoff, gross of screening cost, is

η(l) � Pr(G)max
{
ηG(l), 0

}
+ Pr(B)max

{
ηB(l), 0

}
,

where Pr(G) � qµ̄+ (1− q)(1− µ̄) and Pr(B) � 1−Pr(G), and max
{
ηϕ(l), 0

}
reflects bank’s lending

decision at l. It follows that bank’s net unit payoff at a loan l� (r, q) can be written as η(r, q)−C(q),
where C(q) is the unit cost of screening.19

For any given interest rate r ∈ R, η(r, q) − C(q) defines a function of q over Q. In particular,

different q may give different net payoff to the lending bank, and a set of efficient screening

intensities q may be defined so as to maximize the net payoff for a given r. To provide an

economically meaningful characterization, I explore additional properties of η(r, q) and impose

further restrictions on C(q) in turn.

Properties of η(r, q) Evidently, η(r, q) ≥ 0 and is continuous over C. To further characterize

η(r, q), it is useful to define two more quantities. Let

∆(r) � µ̄ηg(r) − (1 − µ̄)ηb(r).

As ηg(r) ≥ 0 > ηb(r) ∀r ∈ R, ∆(r) > 0. This quantity turns out to be essential for determining

efficient screening. Next, let

η̄(r) � µ̄ηg(r) + (1 − µ̄)ηb(r),

be the unit payoff from lending at r to all borrowers indiscriminately. Following lemma shows that

η(r, q) is piece-wise linear in q for any given r, with ∆(r) as the marginal benefit of screening for q

above certain threshold. The proof is in Appendix A (p.42).

Lemma 3. ∀r ∈ R there is a cutoff value qC(r) ∈ Q such that

η(r, q) �


max{η̄(r), 0}, if q ≤ qC(r);

∆(r)q + (1 − µ̄)ηb(r), if q ≥ qC(r).

Parametric restrictions on C(q) I assume that C(·) is twice continuously differentiable with

C
( 1

2
)
� C′ ( 1

2
)
� 0 and C′(·) ≥ 0, C′′(·) > 0 over Q. Moreover, I impose following parametric

restrictions on C(·).

Assumption 2. C(1) < min
{
µ̄ηg(x),−(1 − µ̄)ηb(x)

}
and C′(1) > ∆(x).

19For a loan l� (r, q) of size z, screening cost is zC(q) and bank’s payoff is zη(r, q).
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The first restriction is equivalent to

η(x , 1) − C(1) � µ̄ηg(x) − C(1) > max{η̄(x), 0} � η
(
x , 1

2
)
,

which ensures that active screening q > 1
2 is better than trivial screening at least for r � x. The

second restriction says that marginal cost of screening gets higher than marginal benefit when q is

close to 1 for r � x.

Now I can define and characterize efficient screening intensity. For any r ∈ R, let

π(r) � max
q∈Q
η(r, q) − C(q)

be the maximum of the net unit payoff, and EQ(r) be set of maximizers. In words, π(r) represents

the profit rate when lending at interest rate r with efficient screening intensity given by EQ(r). The

next result demonstrates that EQ(r) has a simple structure and satisfies nice properties.

Lemma 4. Under Assumption 1–2, there exists a unique r0 ∈ IntR (interior of R) and a function qe(r)
such that

EQ(r) �


1
2 , if r ≤ r < r0;

1
2 ∪ qe(r), if r � r0;

qe(r), if r0 < r ≤ x.

Moreover, qe(r) is continuous, strictly increasing, and satisfies 1
2 < qe(r) < 1 over R; and π(r) equals to 0

over [r , r0] and is continuous and strictly increasing over [r0 , x].

The proof is in Appendix A (p.43). Essentially, banks find it profitable to screen at qe(r) > 1
2

if and only if the corresponding interest rate is not too low, i.e., r ≥ r0. Otherwise, expected

payoff from lending is not enough to recoup screening cost, so banks prefer to not screening at all.

Furthermore, qe(r) is determined simply by the first order condition (ignoring the kink of η(r, q)
caused by max{η̄(r), 0})

∆(r) � C′(qe),

which makes clear why qe(r) is strictly increasing: C′(·) is increasing as C′′(·) > 0; and ∆(·) is

increasing because ∆′(r) � µ̄θg − (1 − µ̄)θb is positive by part (ii) of Assumption 1.

The result that efficient screening intensity qe(r) is increasing in r over [r0 , x] is crucial for the

main results of this paper. To better illustrate the underlying intuition, first note that whenever

marginal benefit of screening gets higher, bank is better off by increasing q to equate marginal cost

with marginal benefit. Second, marginal benefit ∆(r) is increasing in r if and only if µ̄ is greater

14



than the lower bound given by part (ii) of Assumption 1. The reason is as follows. At the margin,

a one unit increase in r changes ∆(r) in two ways: it increases ∆(r) by increasing the direct gain

of lending to additional good borrowers, which is µ̄θg on average; but it also reduces ∆(r) by

decreasing the indirect gain of preventing loss from lending to additional bad borrowers, which is

(1 − µ̄)θb on average, as higher r makes loan loss to bad borrowers smaller. Therefore, the overall

effect depends on the magnitude of µ̄.

III.D Efficient Contract Space

For any contract (r, q) with r < r0 and efficient screening intensity q �
1
2 , the associated screening

activity is trivial. Such cases are economically uninteresting,20 henceforth I focus on what I call the

efficient contract space

Ce
� {(r, q) ∈ C|q � qe(r), r ∈ [r0 , x]}.

As a corollary of the previous two results, the next lemma describes bank’s lending decision at a

loan contract within Ce (see Appendix A, p.43 for the proof). This also shows that contract in Ce

is always consistent with an active lending equilibrium.

Lemma 5. If r ≥ r0, banks deny borrowers with test result B while approve borrowers with test result G

after the screening process at (r, qe(r)).

Focusing on the subspace Ce instead of C amounts to restrict bank’s choice to Ce , which

raises two concerns about the legitimacy of such a restriction. The first concern is that whether

this restriction will effectively restrict the possibility of strategic interactions among banks in a

meaningful way. The answer is no. This comes from the observation that profit rate of lending at

a loan l ∈ Ce ranges continuously from 0 to π(x), the maximum that is achievable from lending at

any loan over the entire contract space C.21 As a result, every profit rate level that may arise when

banks compete with each other by choosing contracts from C can be realized by restricting bank’s

choice to Ce .

Perhaps an even more important concern is that whether it is reasonable to have an active

lending equilibrium at a loan outside Ce . First of all, one can easily construct such an equilibrium.

20Zero profit is always achievable at (r0 , qe (r0)), where screening is nontrivial. Moreover, for r < r0, η̄(r) may be

negative, which then implies that no lending takes place as the corresponding efficient screening intensity is q �
1
2 . This

can never happen when r ≥ r0, as made clear in the next result.

21That is, π(x) � max(r,q)∈C η(r, q) − C(q). This follows from the fact that max(r,q)∈C η(r, q) − C(q) �

maxr∈R maxq∈Q η(r, q) − C(q) � maxr∈R π(r) and that π(r) is increasing in r.
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Consider a loan l1 � (r1 , q1) ∈ IntC\ Ce but is close to Ce , and let the belief system be such that

µ(l1) � µ̄ and µ(l) � 0 ∀l, l1. This is clearly an active lending equilibrium as all borrowers only

apply for l1. However, I argue that such an equilibrium is not reasonable, since the commitment

of screening borrowers at l1 with intensity q1 is not credible. The argument is simple. On the

one hand, q1 , qe(r1) given that l1 is not in Ce . On the other hand, since all borrowers apply

for l1, µ(l1) � µ̄ for sure. Recall that qe(r1) generates the highest net payoff to any bank lending

with r1 and facing a borrower distribution µ̄. Thus any bank which has offered l1 strictly prefers

to deviate from q1 to qe(r1) in the subsequent screening process upon each borrower it has; and

there can be no punishment as the lending game ends after the bank’s deviation right away. Such

a deviation is prohibited only because I assume no change on q can be made by a bank after the

contract (r, q) is offered as a whole at the beginning of a period. In other words, I effectively

assume that all banks possess a commitment technology on both r and q. Yet, by the nature of

screening, the verification of a bank’s actual screening intensity would be very difficult, if not

entirely impossible, to implement by either a borrower or some third party. This is in clear contrast

to a bank’s commitment to r. To sum up, even though a bank is assumed to be able to commit to

any contract in C, its commitment to a contract not in Ce is much less credible, thus I shall restrict

the analysis to Ce below.22

III.E Profit Function

Having argued that it is appropriate to restrict bank’s choice set to be Ce , I move on to explore

borrower’s choice over Ce and deduce profit function of each bank. At any efficient contract

l� (r, qe(r)) ∈ Ce , expected payoffs to good and bad borrowers are

U g(r) � u g(r)qe(r) and Ub(r) � ub(r)(1 − qe(r)),

where I use r to index l for simplicity. It is clear that Ub(r) is decreasing in r, as both ub(r) and

1−qe(r) are decreasing. However, monotonicity of U g(r) is ambiguous without further assumption.

To restore monotonicity of U g(r), I impose following parametric restriction.23

22The foregoing argument on the (in)credibility issue serves as an informal motivation for restriction on Ce . In Section

V.B, I show in a more formal way that equilibrium loan contracts must belong to Ce for a game with a slightly different

extensive form but of the same normal form as the one considered here. Therefore, the invariance principle elucidated

by Kohlberg and Mertens (1986) suggests that no equilibrium contract outside Ce satisfies their stability criterion. In

this sense, “reasonable” equilibria can emerge only in Ce .

23I discuss the robustness of the main results in Section V.D when this assumption is dropped. Assumption 2 and

3 together impose restrictions on the magnitude, the derivative, and the curvature of C(·), which raises a concern of
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Assumption 3. C′′(·) ≥ 2[µ̄ − (1 − µ̄)θb/θg]NPVg over Q.

Lemma 6. Under Assumption 3, U g(r) is decreasing in r.

The proof is in Appendix A (p.43). Observe that µ̄−(1− µ̄)θb/θg � (µ̄θg −(1− µ̄)θb)/θg which

is positive by part (ii) of Assumption 1, thus restriction on C′′(·) imposed by Assumption 3 is not

a void one. However, this parameter restriction is not a severe one either, as it is only a sufficient

condition for U g(r) being decreasing. In addition, provided that µ̄θg − (1 − µ̄)θb and NPVg are

relatively small, the Assumption is not difficult to satisfy.

This result seems to suggest that apparently both types of borrowers prefer loan contract

(r, qe(r)) with lower interest rate r. There is nonetheless a gap for this result to actually hold

in equilibrium. The problem is that approval probability qe(r) and 1 − qe(r), for good and bad

borrowers respectively, at l� (r, qe(r)) is derived under the belief µ(l) � µ̄, which is only pinned

down in such a way if l is selected by borrowers in an equilibrium. In contrast, by the same

argument at the end of the previous subsection, any contract l1 � (r1 , qe(r1)) ∈ Ce can be supported

as the only equilibrium outcome by a belief system µ(l) � 0∀l, l1 over Ce , even though a contract

l2 � (r2 , qe(r2)) with r2 < r1 may be available in the market as well.24

To deal with the problem of multiple equilibria, I provide two arguments for why l1 should

be discarded as a reasonable equilibrium outcome whenever l2 is present. At a formal level, the

only equilibrium that survives the undefeatedness refinement criterion of Mailath et al. (1993)

is the one in which all borrowers select the loan lmin with the minimum interest rate among all

loans available in the market.25 In addition, this equilibrium also Pareto dominates any other

pooling equilibria from borrower’s perspective, which is an appealing property in itself. At a less

whether the parameter space satisfying all assumptions is empty or not. The answer is no. I address this issue in Online

Appendix B.

24To be more precise, ∀l � (r, qe (r)) ∈ Ce , there exits 0 < x(l) < µ̄ < y(l) < 1 such that p g(l) � pb(l) � 1 for

µ(l) ≥ y(l), p g(l) � qe (r) and pb(l) � 1−qe (r) for x(l) ≤ µ(l) < y(l), and p g(l) � pb(l) � 0 for µ(l) < x(l). As a result,

to support l1 as the unique equilibrium contract, out-of-equilibrium belief needs only to satisfy µ(l) < x(l) ∀l, l1.

25In the current context, the undefeatedness criterion selects equilibrium which is not defeated by any another

equilibrium in the following way. Given loan contracts L ⊂ Ce offered by banks, Lemma 2 shows that only pooling

equilibrium is possible in this subgame. A pooling equilibrium at l ∈ Ldefeats another pooling equilibrium at l′ ∈ L,

if both types want to deviate from l′, and at least one type strictly wants to do so, when the equilibrium belief at l in the

latter equilibrium is replaced by the equilibrium belief µ̄ in the former one. Clearly, given l1 and l2 such that r2 < r1,

if µ(l2) � µ̄ in an pooling equilibrium at l1, then both good and bad borrowers strictly prefer l2 to l1. Therefore the

pooling equilibrium at l2 always defeats the one at l1.
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formal level, it seems not overly counter-intuitive to assume that, whenever a bank offers a loan

contract l′ � (r′, qe(r′)) ∈ Ce that undercuts all other loan contracts in the market, i.e., r′ < r

s.t. (r, qe(r)) ∈ L, it’s belief about borrower’s distribution at l′ should be such that it will approve

at least G borrowers at l′; for otherwise there is no incentive for the bank to make such an offer.

But once the bank plans to approve at least G borrowers, then l′ will attract all borrowers.

To summarize, given the set of contracts L offered by all banks in stage 1, there is a unique

pooling equilibrium in which both good and bad borrowers select lmin � (rmin , qe(rmin)), i.e., the

contract with the lowest interest rate rmin � min{r |(r, qe(r)) ∈ L}.26 Under the assumption that

borrowers applying for the same contract offered by multiple banks randomly choose one bank,

equal splitting of market share follows. Thus given l, bank i’s profit function has the following

form:

Πi(l) �


zπ(lmin)/N(lmin), if li � lmin ,

0, otherwise,

where N(lmin) is the number of banks offering lmin. With a slight abuse of notation, I rewrite

bank’s profit rate π(r) as

π(l) � π(r, qe(r)) ≡ µ̄qe(r)ηg(r) + (1 − µ̄)(1 − qe(r))ηg(r) − C(qe(r))

to emphasize that bank chooses both interest rate r and screening intensity q, despite the that q

equals to qe(r). Implicitly, Πi(·) is also a function of the aggregate shock s; and I will make this

explicit in the next section.

Before proceeding to the repeated game, I briefly discuss two extreme cases of the static lending

game.

Zero profit Suppose that there are more than one bank. Since π(r) is strictly increasing in r

over [r0 , x], and both types of borrowers strictly prefer a loan with lower interest rate, it is always

profitable for banks to undercut one another as long as lmin specifies an interest rate rmin > r0.27

As a result, the only equilibrium of the static lending game has banks offer zero profit efficient

26An immediate implication is that, for any bank i, the only contract that matters for i’s payoff, were i allowed to

offer multiple contracts, would be the contract with the lowest interest rate. This justifies my assumption that each bank

offers only one contract in each period.

27This feature of the model coincides with the prototypical model of Bertrand competition with homogeneous output

and constant marginal cost. Such a correspondence is only a superficial one; the lengthy derivation of the profit function

should have made this point evident.
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contract l0 � (r0 , q0) with q0 � qe(r0) in stage 1 which results in a pooling equilibrium at l0 in the

subgame of stage 2 to 3.

Monopoly Suppose that there is only one bank. Then the equilibrium of the lending game

features a pooling equilibrium at the monopoly profit efficient contract lm � (rm , qm) with rm � x

and qm � qe(x), as profit rate π(r) is increasing in r over [r0 , x].28

IV Equilibrium Dynamics

With borrower’s equilibrium behavior subsumed into bank’s profit functionΠi(·) ∀i ∈ N , the lend-

ing game between banks and borrowers reduces to a game among N banks with Πi(·) specifying

the payoff associated with bank’s action profile l� (l1 , . . . , lN) conditional on the aggregate shock

s. Despite the fact that the entire lending game is repeated over time, it suffices to consider strategic

interactions only among banks over time, because borrower’s investment shock θ, i.e., type, is iid

over time. This fact greatly simplifies the analysis of equilibrium dynamics and leads to a setup

similar to Rotemberg and Saloner (1986). In what follows, I first introduce some notations for the

repeated game and define the equilibrium concept under a general specification of the aggregate

shock process {st}. Then I solve for the equilibrium dynamics under various specific forms of {st},
which reflect various aspects of business cycle fluctuations. To avoid trivial case, I assume N ≥ 2

throughout this section.

IV.A A Formal Setup

Both the banks and the borrowers observe the realization of st ∈ S⊂ Rd perfectly at the beginning

of time t, and {st} evolves over time as a stationary Markov process. I assume that s determines the

payoff relevant parameter vector (x , c , θg , θb , z , µ̄) through a continuous, vector-valued function

Ξ(s). Later in this section, I consider a series of different forms of Ξ(s) corresponding to different

forms of aggregate shocks. To be able to use the results established in the previous section, I assume

that Assumption 1–3 hold ∀s ∈ S.29 Thus the efficient contract space Ce(s) � {(r, qe(r; s))|r0(s) ≤
r ≤ x , s ∈ S)} is well defined ∀s ∈ S, with l0(s) � (r0(s), q0(s)) and lm(s) � (rm(s), qm(s)) denoting

the zero profit and the monopoly contract. Since Ξ(s) is continuous in s, Ce(s) is a continuous

28To be precise, when r � x, pooling is no longer the unique equilibrium outcome as borrower is indifferent between

applying for a loan or not. For reasons detailed in the discussion following Lemma 2, I fix borrower’s behavior by

assuming that both good and bad borrowers still apply for lm when only this loan is offered.

29As shown in Appendix B, Assumption 1–3 are satisfied by the parameter vector (x , c , θg , θb , z , µ̄) over an open

region. Given a continuous function Ξ(s), the assumptions are satisfied ∀s ∈ Sas long as S is not too “big.”
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correspondence, and l0(s) and lm(s) are continuous functions. Moreover, I writeΠi(l; s) explicitly

as a function of s with l ∈ (Ce(s))N ; evidently,Πi(l; s) is also continuous in s. Since st determines

both the current value and the future distribution of the parameter vector, it is a state variable of

the economy.

Let ht � (st , lt−1 , st−1 , . . . , l0 , s0) denote the history up to time t with h0 � s0, sτ ∈ S, and

lτ ∈ (Ce(sτ))N ∀τ � 0, . . . , t. All banks observe past history perfectly. A pure strategy of

bank i at t is a function σi
t : ht 7→ li

t assigning for each history ht a loan choice li
t ∈ Ce(st). Let

σt � (σ1
t , . . . , σ

N
t )denote the strategy profile at t, and σ � {σt}∞t�0 denote the overall strategy profile.

A strategy profile σ recursively determines ht � (st , σt−1(ht−1), ht−1). Based on the distribution of

{st}, σ induces a distribution over the set of all history ht , and hence the expectation operator Eσ.

Moreover, let σ |ht denote the strategy profile induced by σ after history ht , and Eσ[·|ht] denote the

corresponding conditional expectation operator. Lastly, let 0 < δ < 1 denote the common discount

factor for all banks,30 then bank i’s end-of-period expected payoff conditional on ht can be written

as

V i(σ |ht) � E
σ

[ ∞∑
τ�0
δτΠi(σt+τ(ht+τ); st+τ)

�����ht

]
,

with δV i(σ) � δEV i(σ |s0) denoting the discount value before the realization of s0.

As is standard, a subgame perfect equilibrium (SPE) is a strategy profile σ such that for any

history ht , σ |ht is a Nash equilibrium for the subgame starting from ht . A symmetric subgame

perfect equilibrium (SSPE) is an SPE in which all banks use the same strategy σ1 � · · · � σN . To

save notation, let σ denote both individual bank’s strategy and the strategy profile of all banks in

an SSPE, i.e., σ � (σ, . . . , σ). Correspondingly, let l� {{lt(st)}st∈S}∞t�0 denote a (symmetric) action

profile where lt(st) � (lt(st), . . . , lt(st)). All banks receive the same expected discount payoff V(σ)
which is bounded from below by 0 and from above by (1 − δ)−1 maxs∈S z(s)π(lm(s); s) < ∞. There

could be many SSPE for the repeated game considered here and I shall focus on a particular one,

the optimal SSPE.

Definition 2. An optimal SSPE is a strategy profile σ∗ such that

V(σ∗) � V∗ ≡ sup{V(σ)|σ is an SSPE},

30Since risk-free rate is 0 in this economy, I interpret δ < 1 as reflecting some positive premium commanded by

bank’s owner/manager on its return over risk-free rate. Nevertheless, having zero risk-free rate and δ < 1 only serves to

simplify relevant algebra. It is straightforward to extend the benchmark setting allowing for a constant (gross) risk-free

rate rf > 1 with δ � 1/rf .
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and an optimal (stochastic) path l∗ is an action profile l∗ � {{l∗t (st)}st∈S}∞t�0 such that V∗ � V(l∗) ≡
E
∑∞

t�0 δ
t z(st)π(l∗t (st); st)/N .

I use standard results in the literature of repeated game to solve for an optimal SSPE.31 First,

observe that repeated play of l0(st) by all banks consists of an SSPE with zero payoff in each

period. As each bank’s minmax payoff is also zero, repeated play of l0(st) by all banks represents

the (symmetric) optimal punishment strategy. Let l∗ be an optimal path of some optimal SSPE.

Then l∗ can be supported by the following simple strategy profile:

• All banks choose l∗t (st) at t if no bank deviates from l∗ at t − 1.

• All banks revert to the optimal punishment strategy if a bank deviates from l∗ at t − 1.

Whenever one bank deviates from the optimal path l∗ at t − 1, all banks choose the zero profit

contract l0(sτ) from t onwards forever, resulting in zero continuation value after any deviation.

The optimal value V∗ is clearly unique, and the optimal action profile is also unique as shown

below. I therefore call the simple strategy profile described above the optimal SSPE σ∗.32

Since {st} is a stationary Markov process, the optimal action profile is a time invariant function

l∗(s) � (r∗(s), q∗(s)). Correspondingly, the optimal value achieved by l∗ simplifies to V∗ � N−1(1−
δ)−1Ez(s)π(l∗(s); s), where E is evaluated under the stationary distribution of {st}. As a direct

implication of the optimal SSPE profile σ∗, {l∗(s) ∈ Ce(s)|s ∈ S} solves the following maximization

problem

V∗
� max

{l(s)∈Ce (s)|s∈S}

Ez(s)π(l(s); s)
N(1 − δ)

subject to the intertemporal incentive constraint (IIC) ∀s ∈ S

1
N z(s)π(l(s); s) + δEsV(l(·); s′) ≥ z(s)π(l(s); s),

where V(l(·); st) � Est

∑∞
τ�0 δ

τz(st+τ)π(l(st+τ); st+τ)/N denotes the continuation value under the

action profile l(·) conditional on st . The LHS of the IIC is the sum of the current and the continuation

31See, e.g., Mailath and Samuelson (2006, ch.2, sec.6).

32This simple strategy coincides with the grim trigger strategy (reversion to the static Nash equilibrium following any

deviation), a result typical for repeated Bertrand competition model with homogeneous output and constant marginal

cost. For the repeated game considered here, there is a unique optimal action profile associated with the optimal value,

whereas punishment strategy other the one specified in σ∗ can be used for supporting the optimal action profile along

the equilibrium path. One particular nonsymmetric optimal punishment strategy has one bank offers l0(st+τ) following

any deviation from l∗(st ).
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value of following l(·) conditional on s, and the RHS is the profit that a deviating bank can capture

by undercutting other banks’ choice l(s) � (r(s), qe(r(s))) an infinitesimal amount. Since any

deviation entails zero continuation value, a bank optimally choose not to deviate if and only if the

LHS is no less than the RHS.

In the above formulation, the maximization problem is non-linear in l(s). However, observe

that l(s) enters into both the objective and the constraints via the value of the profit v(s) �

z(s)π(l(s); s), it follows that the maximization problem is a linear program in {v(s)}. In particular,

l(s) maps one-to-one to v(s) so that v(s) ranges over [0, v̄(s)] where v̄(s) � z(s)π(lm(s); s).33
Furthermore, as in Rotemberg and Saloner (1986), I focus mostly on the case in which {st} is iid

over time. Then the linear program associated with the optimal SSPE has the following simple

form

P : max
{v(s)∈[0,v̄(s)]|s∈S}

Ev(s) s.t. χ(N, δ)v(s) ≤ Ev(s) ∀s ∈ S.

The coefficient in the IICs is given by

χ(N, δ) � (N − 1)1 − δ
δ

∀N ≥ 2 and 0 < δ < 1. This quantity turns out to be a crucial characteristic of the overall

competitive force of the banking sector.

The solution of P, denoted by {v∗(s)|s ∈ S}, relates to l∗(s) through the one-to-one correspon-

dence of v(s) � z(s)π(l(s); s) and satisfies V∗ � Ev∗(s). In general, P is not easy to solve directly as

the constrained set is an irregular polyhedron. However, the solution of P is closely related to the

function defined by

Pw : B(w) ≡ max
{v(s)∈[0,v̄(s)]|s∈S}

Ev(s) s.t. χ(N, δ)v(s) ≤ w

∀w ∈ [0,maxs∈S v̄(s)]. The next lemma shows that the solution of P is actually the maximum fixed

point of B(w); the proof is in the Appendix A (p.44).

Lemma 7. Suppose {st} is iid over time and has a distribution strictly positive over S. Then V∗ is the unique

maximum fixed point of B(w).

33More specifically, v(s) � z(s)π(l(s); s) � z(s)π(r; s) with r0(s) ≤ r ≤ x. As π(r; s) is strictly increasing in r, v(s) is

one-to-one to l(s) � (r, qe (r; s)) and ranges over [0, v̄(s)].
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As a result, there is a unique solution {v∗(s)} of P, and this in turn verifies the claim that

the optimal SSPE is unique.34 The task of solving for P becomes finding the maximum fixed

point of B(w). For any given w, the counterparts of IICs in Pw become state independent, i.e.,

v(s) ≤ w/χ(N, δ), which makes Pw easy to solve and B(w) easy to characterize. Consequently,

solving for the maximum fixed point of B(w) reduces a simple discussion of w over different

regions, yielding {v∗(s)} as a by-product.35

In the rest of this section, I proceed by characterizing the optimal SSPE under three different

specifications of iid {st}, corresponding to three different forms of business cycle shocks: the credit

demand shock, the collateral value shock, and the risk distribution shock. Then I investigate the

implications of the interaction among different forms of shocks. Lastly, I discuss briefly the case

where {st} is serially correlated.

IV.B Credit Demand Shock

I first consider the credit demand shock zt � Ξ(st) with the simplest distribution specification

denoted by Fz : zt is iid over time, takes one of two values {zh , zl} with zh > 1 > zl > 0,

Pr(zh) � γh > 0 and Pr(zl) � γl � 1 − γh > 0, and satisfies Ezt � 1. In this case zt is the only

aggregate shock and all other payoff relevant parameters remain constant. A value zh > 1 reflects

a positive credit demand shock which shifts the inelastic credit demand schedule outwards during

booms; and a two-state zt means that the economy is either in boom or recession. Since the shock

affects only the indivisible size of each project but no other payoff relevant parameters, the efficient

contract space Ce is independent of z. In particular, the profit rate π(l), the zero profit contract

l0 � (r0 , q0), and the monopoly contract lm � (rm , qm) are the same for all z. For simplicity I

relabel Sso that s � h or l.

The following proposition fully characterizes the optimal SSPE where the credit demand shock

is the only aggregate shock; the proof is in Appendix A (p.44).

Proposition 1. Suppose {zt} is the only aggregate shock which satisfies Fz and denote by l∗s � (r∗s , q∗s) ∀s ∈
{h , l} the action profile of the optimal SSPE.

(a) If χ(N, δ) ≤ 1/zh then l∗s � lm and π(l∗s ) � πm ∀s � h , l.

34A strictly positive distribution over Sensures the uniqueness of the solution of Pw . When S is a continuum set, the

uniqueness is subject to the requirement that v(s) be continuous over S. See Liu (2014) for a more detailed discussion.

35Essentially, Lemma 7 is a restatement of the solution approach used in Rotemberg and Saloner (1986) for a general

shock specification.
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(b) If 1/zh < χ(N, δ) ≤ 1 then l∗l � lm and l∗h is such that r0 < r∗h < r∗l � rm and q0 < q∗h < q∗l � qm .

Moreover 0 < π(l∗h) < π(l
∗
l ) � π

m while zhπ(l∗h) ≥ zlπ(l∗l )

(c) If 1 < χ(N, δ) then l∗s � l0 and π(l∗s ) � 0 ∀s � h , l.

This proposition makes clear that the property of the optimal SSPE depends on the value of

the characteristic χ(N, δ). Each of the three regions of χ(N, δ) corresponds to a distinct category

of overall competition. Intuitively, bank’s long-term gain of joint profit maximization at monopoly

level outweighs short-term gain of deviation when either the number of banks N is sufficiently

small or the banks are sufficiently patient with δ close to 1, both of which lead to small χ(N, δ).
The opposite occurs if N is very large or δ is very small, as summarized by a large χ(N, δ), in

which case long-term cooperation is always vulnerable to short-term deviation whenever the gain

of doing so is positive. For interim values of both N and δ, χ(N, δ) falls in the region where

joint profit maximization in booms is constrained by the increased gain from deviation, which in

turn pushes the banks to compete more so as to keep the prevailing profit rate low enough for

counter-balancing the greater incentive to deviate.

The last point can be seen more clearly from the intertemporal incentive constraint in a boom

period. The IIC in state h for the optimal SSPE is

1
N

zhπ(lh) +
δ

N(1 − δ) [γh zhπ(lh) + γl zlπ(lm)] ≥ zhπ(lh),

where I have used the fact that l∗l � lm when 1/zh < χ(N, δ) ≤ 1. Were the banks try to maintain

jointly monopoly profit rate by choosing lh � lm , the IIC would require δ
N(1−δ)π(lm) ≥ N−1

N zhπ(lm)
asEz � 1, so that the continuation value (LHS) is no less than the value of deviation (RHS). However,

1/zh < χ(N, δ) implies that N−1
N zh >

δ
N(1−δ) , so that the value of deviation is necessarily greater

than the continuation value if lh � lm . The banks stop undercutting each other only if π(lh) is low

enough to restore the IIC, and any profit rate higher than this level is competed away.

Compare this with the IIC in state l, i.e., recessions. Were the banks to charge ll � l∗h such that

π(l∗h) < π(l
m), then the IIC would only require δ

N(1−δ)π(ll) ≥ N−1
N zlπ(lh). Yet χ(N, δ) ≤ 1 < 1/zl

implies that N−1
N zl <

δ
N(1−δ) , therefore the IIC is strictly non-binding, which means that there is still

room for a higher profit rate in state l to be achieved in the optimal SSPE. The comparison between

the IIC in the two states clearly indicates that it is the higher value of zh , i.e., a positive demand

shock, that causes a higher incentive to deviate during booms. The banks optimally choose to

compete away any profit rate that is higher than π(l∗h), the highest level that is sustainable in the
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optimal SSPE. For this, the banks charge a lower interest rate r∗h < r∗l and enforce a lower standard

q∗h < q∗l during booms.

As a result, procyclical lending policy emerges endogenously in the optimal SSPE when the

banking sector characteristic χ(N, δ) takes interim values. This procyclicality, especially in lending

standard, is a fairly strong result, as the underlying demand shock zt is a pure quantity shock

which affects no risk attribute of the model economy. Because of bank’s endogenous choice

of lower lending standard, higher credit demand during booms ultimately leads to more risk on

bank’s balance sheet, as more bad projects are financed by the banking sector. This is made evident

by the probability of good borrowers conditional on receiving good signal G hence being approved

by banks, i.e., νG �
µ̄q∗

µ̄q∗+(1−µ̄)(1−q∗) , an increasing function of q∗. The lower q∗ is, the more likely a bad

borrower receives a good signal G, and consequently more bad borrowers obtain credits. Given

νG, the average success probability across all projects being financed is θ̄ � νGθg + (1− νG)θb , and

the average default probability 1 − θ̄ thereby is decreasing in q∗ as θg > θb . Thus, a pure quantity

demand shock endogenously leads to higher default risk in the economy by inducing the banks to

lower their lending standards.

Procyclical lending policy induced by credit demand shock also highlights the importance of

an intermediate degree of competitive force as captured by an interim value of χ(N, δ).36 When

the competitive force in the banking sector is either too strong or too weak, captured by extreme

values of χ(N, δ), lending policy does not respond to credit demand shock but stays constant with

either hight-rate/high-standard lm or low-rate/low-standard l0. In contrast, for intermediate

competitive force= captured by interim values of χ(N, δ), lending policy becomes responsive to

the credit demand shock through the channel of competition. Procyclical competition thus drives

procyclical lending policy in this case.

The above discussion suggests that procyclical lending policy l∗h , l∗l depends on having a

36The term competitive force tends to describe the degree of the overall strategic rivalry among the banks, both across

state and over time, as imposed by relatively slow-moving fundamentals like industry structure N and time preference

δ. In this regard, the competitive characteristic χ(N, δ) turns out to be a proper indicator of three different categories

of the overall pattern of competition: jointly monopoly, zero profit perfect competition, and the one in between. In

comparison, by procyclical competition, I refer to a situation in which the market outcome of banks’ strategic interactions

varies systematically across different states of the economy, but remains in between the two extremes of monopoly

and perfect competition. Nonetheless, there is a connection between χ(N, δ) and the market outcome in state h: when

1/zh < χ(N, δ) ≤ 1, π(l∗h) �
γl

χ(N,δ)−γh

zl
zh
πm (see the proof of Proposition 1), which allows an interpretation that higher

χ(N, δ) leads to more competition in state h.
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higher than usual demand shock zh > 1 during booms. To further explore the impact of the

magnitude of zh on l∗h , I consider the following comparative static exercise. Keep on fixing zl , γl ,

and Ez � 1. Let zh and γh vary in a way such that γh zh � z̄ < 1 remain constant.37 The next

proposition characterizes l∗h as a function of zh ; the proof is in Appendix A (p.45).

Proposition 2. Suppose that χ(N, δ) ≤ 1 is fixed and variation in zH always satisfies 1/zh < χ(N, δ).
Then in the optimal SSPE l∗h ∈ Ce is such that

π∗h ≡ π(l∗h) �
1 − z̄

zhχ(N, δ) − z̄
πm < πm .

Moreover limzh→∞ π∗h � 0 and limzh→∞ l∗h � l0.

The intuition underlies this proposition is simple. Since the deviation incentive is proportional

to zh in state h, the greater the zh is, the more excess profit needs to be competed away so as to

satisfy the IIC. In the limit, the banking sector becomes very close to perfect competition with zero

profit when the economy is hit by a sufficiently strong credit demand shock. With credit demand

shock evolving in such a pattern, the economy is jumping back and forth along the equilibrium

path, where both interest rate and lending standard spike to a level as high as monopoly during

recessions while plummet to the perfectly competitive level during large booms. With the aid of

imperfect competition, the financial cycle resulted in such a way can be quite volatile.

IV.C Collateral Value Shock

In this subsection, I consider the aggregate collateral value shock ct � Ξ(st).38 As for the case of

credit demand shock, I continue to assume that {ct} satisfies a simple distribution specification

denoted by Fc : ct is iid over time, takes one of two values {ch , cl} with 1 > ch > cl > 0, Pr(ch) �
γh > 0 and Pr(cl) � γl � 1 − γh > 0. This captures the idea that as asset prices pick up on average

37This ensures that when comparing l∗h of economies with different zh , all those economies have the same mean credit

demand and aggregate risk attributes in state l. One interpretation is that state l represents the normal time whereas

state h stands for a period with unexpectedly high credit demand.

38To help fix idea, I provide a more specific interpretation of c. Consider a θ borrower starts a project with one unit

initial investment. The initial investment is divided into two parts: one for fixed investment into tangible capital, be it

machinery, equipment, and plant for a firm, or simply a house for a home buyer; the other for intangible capital, such

as enhanced productivity of a home buyer achieved from having the house for better rest. Depending on the overall

economic situation, the tangible capital commands a resale value of c at the end of the period, while the extra risky

payoff from operating the project is either x − c with probability θ or 0 with 1 − θ. By assuming limited liability, the

only collateral the borrower needs to put up front is the project itself, from which the lending bank seizes the tangible

capital in default at a value of c.
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in booms, the value of given collateral also increases. In this case, the collateral value shock is the

only aggregate shock, and all other parameters remain constant. In particular, the credit demand

z � 1 is constant.

Even though the collateral value shock only takes two values ch and cl , it is useful to define

relevant functions ∀c ∈ [cl , ch]. In particular, let ηθ(r; c) � θr+ (1−θ)c−1, ∆(r; c) � µ̄ηg(r; c)−(1−
µ̄)ηb(r; c), and qe(r; c) � (C′)−1(∆(r; c)). As is easily verified, Assumption 1–3 still hold ∀c ∈ [cl , ch]
as long as they hold for c � cl and ch . Thus Ce(c), l0(c), and lm(c) are all well-defined ∀c.

For subsequent use, I write the profit rate function π(l; c) � π(r; c) explicitly as a function of r

and c:

π(r; c) � µ̄qe(r; c)ηg(r; c) + (1 − µ̄)(1 − qe(r; c))ηb(r; c) − C(qe(r; c)).

As qe(r; c) solves maxq µ̄qηg(r; c)+ (1− µ̄)(1− q)ηb(r; c) − C(q), the Envelope theorem implies that

∂cπ(r; c) � µ̄qe(1 − θg) + (1 − µ̄)(1 − qe)(1 − θb) > 0,

∂rπ(r; c) � µ̄qeθg
+ (1 − µ̄)(1 − qe)θb > 0,

with qe � qe(r; c). It follows that πm
h � π(x; ch) > π(x; cl) � πm

l , and r0
h < r0

l , for otherwise a

contradiction results from inequality π(r0
h ; ch) ≥ π(r0

l ; ch) > π(r0
l ; cl) � 0. Let π̄m � γhπm

h + γlπm
l .

With this preparation, I can state the first main result for the case of the collateral value

shock. The next proposition provides a partial characterization of the optimal SSPE; the proof is

in Appendix A (p.45).

Proposition 3. Suppose {ct} is the only aggregate shock which satisfies Fc and denote by l∗s � (r∗s , q∗s) ∀s ∈
{h , l} the action profile of the optimal SSPE.

(a) If χ(N, δ) ≤ π̄m/πm
h then l∗s � lm

s and π(l∗s ) � πm
s ∀s � h , l.

(b) If π̄m/πm
h < χ(N, δ) ≤ 1 then l∗l � lm

l and l∗h is such that r0
h < r∗h < r∗l � rm

h . Moreover

0 < π(l∗l ; cl) � πm
l ≤ π(l∗h ; ch) < πm

h .

(c) If 1 < χ(N, δ) then l∗s � l0
s and π(l∗s ; cs) � 0 ∀s � h , l.

Virtually the same intuition detailed following Proposition 1 applies here: as higher collateral

value during booms increases deviation incentive, it is optimal for the banks to compete away any

excess profit above π(l∗h) so to restore IIC when χ(N, δ) takes interim values. This proposition

predicts that when there is only the aggregate collateral value shock, the banking sector’s profit

rate π(l∗s ; cs) is weakly procyclical as long as the sector is no perfectly competitive, i.e., χ(N, δ) ≤ 1.
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In contrast, Proposition 1 predicts that when the only aggregate shock is a credit demand shock,

the profit rate is weakly countercyclical under the same condition of χ(N, δ). As a result, when

both shocks are present, the cyclicality of banking sector profit rate is ambiguous. This suggests

that an empirical measure of banking sector profit rate, however accurate, is not always a good

indicator of cyclical competition when the real economy is subject to both a credit demand shock

and a collateral value shock.

Unlike the case of credit demand shock, equilibrium interest rate is always countercyclical

regardless of the competitive force, i.e., χ(N, δ), of the banking sector. In particular, even if the

competitive force is strong enough so that equilibrium profit rate is zero in both states, r0
l is still

higher than r0
h , whereas the zero profit interest rate is constant for the case of credit demand shock.

This is so because a credit demand shock does not affect the riskiness of the economic fundamental,

while a higher collateral value raises the overall profitability of all projects.

So far I have not discussed equilibrium dynamics of the lending standard, that is whether q∗l is

greater than q∗h or not. The reason is that the impact of collateral value c upon efficient screening

intensity could go either way under maintained assumptions. Simple calculus shows that

∂qe(r; c)
∂r

�
∂r∆(r; c)

C′′(qe(r; c)) �
µ̄θg − (1 − µ̄)θb

C′′(qe(r; c)) ,

∂qe(r; c)
∂c

�
∂c∆(r; c)

C′′(qe(r; c)) �
µ̄(1 − θg) − (1 − µ̄)(1 − θb)

C′′(qe(r; c)) .

As before, part (ii) of Assumption 1 requires that µ̄θg − (1 − µ̄)θb > 0, so ∂Rqe(r; c) > 0; yet it puts

no restriction on µ̄(1 − θg) − (1 − µ̄)(1 − θb), so that ∂c qe(r; c) can be either positive or negative.

In order to work out a complete characterization of equilibrium dynamics of q∗s , I first provide a

partial characterization in the next lemma, of which the proof is in Appendix A (p.46).

Lemma 8. Suppose cl ≤ c1 < c2 ≤ ch and lj � (r j , q j) ∈ Ce(c j) j � 1, 2 is such that π(l1; c1) � π(l2; c2).
Then r1 > r2 and q1 > q2.

An immediate implication of this result is that q∗l � q0
l > q∗h � q0

h when χ(N, δ) > 1, as

both l0
l and l0

h results in zero profit. Like the interest rate, the equilibrium lending standard is

also countercyclical when the competitive force is very strong in the banking sector. It is also

straightforward to characterize q∗s � qm
s ∀s � h , l when χ(N, δ) ≤ π̄m/πm

h . According to the sign of
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∂c qe(x; c), there is

q∗l < q∗h , if µ̄(1 − θg) − (1 − µ̄)(1 − θb) > 0,

q∗l � q∗h , if µ̄(1 − θg) − (1 − µ̄)(1 − θb) � 0,

q∗l > q∗h , if µ̄(1 − θg) − (1 − µ̄)(1 − θb) < 0.

Thus when the competitive force in the banking sector is very weak, the cyclicality of the lending

standard depends on the sign of µ̄(1−θg)−(1− µ̄)(1−θb). In particular, if the borrower distribution

µ̄ is lower than a critical level (1−θb)/(2−θg−θb) < 1, then the lending standard is countercyclical.

The remaining case is for the intermediate degree of competitive force in the banking sector.

Let r l
h denote the unique r < x such that π(r; ch) � π(x; cl). The next proposition gives a complete

characterization of the equilibrium lending standard for this case; the proof is in Appendix A (p.46)

Proposition 4. Suppose π̄m/πm
h < χ(N, δ) < 1. When µ̄ ≤ 1−θb

2−θg−θb there is q∗l > q∗h . When µ̄ > 1−θb

2−θg−θb

there exists an r̂ such that r l
h < r̂ < x and

(a) q∗l < q∗h if r∗h > r̂;

(b) q∗l � q∗h if r∗h � r̂;

(c) q∗l > q∗h if r∗h < r̂ .

Moreover q∗l > q∗h always holds for χ(N, δ) sufficiently close to 1.

Although the complete characterization of q∗s ∀s � h , l is somewhat delicate, for most parameter

combinations the lending standard dynamics still features a countercyclical pattern, that is the

banks tend to enforce a lower lending standard when the booming economy is associated with a

higher collateral value. In particular, whenever the overall fraction of good borrowers is not too

high or the competitive force of the banking sector is relatively strong, a countercyclical lending

standard is guaranteed to emerge. Only with very high proportion of good borrowers and relatively

weak competitive force of the bank sector will a higher collateral value be more than compensate

a lower interest rate, such that the marginal benefit of screening becomes higher during booms,

resulting in higher lending standard.

IV.D Risk Distribution Shock

In this subsection, I consider the risk distribution shock µ̄t � Ξ(st). As before, I assume that {µ̄t}
satisfies a simple distribution specification denoted by Fµ̄: µ̄t is iid over time, takes one of two
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values {µ̄h , µ̄l} with 1 > µ̄h > µ̄l > 0, Pr(µ̄h) � ch > 0 and Pr(µ̄l) � cl � 1 − ch > 0. This shock

affects only the composition of good and bad borrowers in the economy over time.39 The idea is

that in general risk distribution should improve during booms, resulting in a better composition

of good borrowers, so that µ̄h > µ̄l . In this case, the risk distribution shock is the only aggregate

shock, and all other parameters, including z � 1 and c, remain constant over time.

As before, I define ηθ(r; µ̄), ∆(r; µ̄), and qe(r; µ̄) ∀µ̄ ∈ [µ̄l , µ̄h], and all assumptions hold ∀µ̄
as long as they hold for µ̄ � µ̄l and µ̄h . Consequently, Ce(µ̄), l0(µ̄), and lm(µ̄) are all well-

defined. Analogous to the case of the collateral value shock, I write the profit rate π(l; µ̄) � π(r; µ̄)
explicitly as a function of r and µ̄. It is easily shown that ∂rπ(r; µ̄) > 0 and ∂µ̄π(r; µ̄), so that

πm
h � π(x; µ̄h) > π(x; µ̄l) � πm

l and r0
h < r0

l . Let π̄m � γhπm
h + γlπm

l .

Although the maximization problem defining the optimal SSPE under the risk distribution

shock appears to be similar to that of the collateral value shock, there turns out to be no simple

characterization of equilibrium screening intensity without an additional parametric restriction.40

The necessary restriction is ηg(x) + ηb(x) ≤ 0. Under this restriction, I can obtain again a sharp

characterization of the equilibrium. The next proposition states the result; the proof is in Appendix

A (p.47).

Proposition 5. Suppose {µ̄t} is the only aggregate shock which satisfies Fµ̄ and ηg(x)+ ηb(x) ≤ 0. Denote

by l∗s � (r∗s , q∗s) ∀s ∈ {h , l} the action profile of the optimal SSPE.

(a) If χ(N, δ) ≤ π̄m/πm
h then l∗s � lm

s and π(l∗s ) � πm
s ∀s � h , l. Moreover qm

h ≤ qm
l and πm

h > π
m
l .

(b) If π̄m/πm
h < χ(N, δ) ≤ 1 then l∗l � lm

l and l∗h is such that r0
h < r∗h < r∗l � rm

h and q0
h < q∗h < q∗l � qm

h .

Moreover 0 < π(l∗l ; µ̄l) � πm
l ≤ π(l∗h ; µ̄h) < πm

h .

(c) If 1 < χ(N, δ) then l∗s � l0
s and π(l∗s ; cs) � 0 ∀s � h , l. Moreover r0

h < r0
l and q0

h < q0
l .

Under the additional restriction ηg(x) + ηb(x) ≤ 0, the overall pattern of the equilibrium

dynamics is quite similar to that of the collateral value shock. In particular, both bank lending

policy and banking sector profit rate are countercyclical for interim values of χ(N, δ). As for the

39A supplementary assumption is that conditional on µ̄t , the investment shock θ is still iid over borrowers and satisfies

Pr(θg) � µ̄t , so that an application of a suitable law of large number implies that the fraction of good borrowers is µ̄t at

time t.

40The characterization of equilibrium interest rate parallels that of the collateral value shock, so does equilibrium

profit rate, without any additional parametric restriction. For the problem of obtaining a simple characterization of

screening intensity comparable to that of the collateral value shock, see Online Appendix C.
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case of the credit demand shock and the collateral value shock, this countercyclicality is driven by

procyclical competition within the banking sector. To sum up, countercyclical lending policy in

both interest rate on loans and lending standard appears to be a robust equilibrium phenomenon,

under all three aggregate shock specifications.

IV.E Interactions among Shocks

In this subsection, I consider the case in which two aggregate shocks are correlated. In particular,

I assume both the credit demand shock and the collateral value shock are affecting the economy,

so (zt , ct) � Ξ(st) and satisfies the a simple distribution specification denoted by Fzc : st is iid over

time, with the joint distribution given by

Prob. φγh (1 − φ)γh γl

ct ch ch cl

zt zh zl zl

where γl , γh > 0, γh + γl � 1, 0 < φ < 1, ch > cl , and zh > zl . It can be showed that the

correlation coefficient between zt and ct increases from 0 to 1 as φ increases from 0 to 1.41 This

specification has the following interpretation. With probability γh (γl), the economy experiences a

boom (recession) period, during the collateral value is high (low). Conditional on a boom period,

with probability φ, the credit demand is high; otherwise it remains at a lower level during either

a boom or a recession. This gives a very simple specification in which zt and ct are correlated to

any degree.

To simplify the notation, let s � h , x , l denote the high state (zh , ch), the mixed state (zl , ch),
and the low state (zl , cl) respectively, and let the corresponding probabilities be ξs ∀s � h , x , l. As

before, I assume Assumption 1–3 are satisfied in all states. Since zt does not affect the unit payoff

of a loan, the requirement is only binding for ct . More specifically, the efficient contract space

Ce
s , the profit function π(ls ; cs), the zero profit contract l0

s , and the monopoly contract lm
s are well

defined ∀s � h , l, with the convention that all objects defined for s � x are the same for s � l. As

for the case of only the collateral value shock, πm
h � πm

x � π(lm
h ; ch) > π(lm

l ; cl) � πm
l . Moreover,

let v̄h � zhπm
h , v̄x � zlπm

h , v̄l � zlπm
l , and v̄ � Ev̄s � ξh v̄h + ξx v̄x + ξl v̄l .

The next proposition characterizes the optimal SSPE where the collateral value shock interacts

with the credit demand shock; the proof is in Appendix A (p.47).

41See the technical lemma D.1 in the online Appendix D.
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Proposition 6. Suppose the aggregate shock st � (zt , ct) satisfies distribution Fz ,c and µ̄ ≤ 1−θb

2−θg−θb .

Denote by l∗s ∀s � h , x , l the action profile of the optimal SSPE.

(a) If χ(N, δ) ≤ v̄/v̄h then l∗s � lm
s ∀s � h , x , l.

(b) If v̄/v̄h < χ(N, δ) ≤ [(ξh + ξx)v̄x + ξl v̄l]/v̄x then l∗s � lm
s for s � x , l and l∗h � (r∗h , q

∗
h) is such

that r∗h < r∗x � r∗l � x and q∗h < q∗x < q∗l .

(c) If [(ξh + ξx)v̄x + ξl v̄l]/v̄x < χ(N, δ) ≤ 1 then l∗l � lm
l and l∗s � (r∗s , q∗s) ∀s � h , x are such that

r∗h < r∗x < r∗l � x , and q∗h < q∗x < q∗l .

(d) If χ(N, δ) > 1 then l∗s � l0
s ∀s � h , x , l.

The proposition indicates that if 0 < φ < 1, i.e., zt and ct are positively correlated, then the credit

demand shock amplifies the impact of the collateral shock upon the lending policies for interim

χ(N, δ). The same result holds if I exchange the order of ct and zt in the distribution specification

Fzc . Thus the two shocks are mutually reinforcing each other when their correlation is positive,

making the lending policies even more countercyclical over time. Intuitively, when the correlation

is positive, both shocks are likely to have high realizations together, and for certain values of

χ(N, δ), this makes the deviation incentive be even higher, thus more aggressive competition is

required for restoring the intertemporal incentive constraint.

IV.F Persistent Shock

In this subseciton, I consider again the credit demand shock zt � Ξ(st) which takes one of two

values zh > 1 > zl > 0 as before. Unlike the previous case in which {zt} is iid over time, now I

assume the shock is persistent. In particular, {zt} is a stationary Markov chain with the transition

matrix

P �


1 − α α

β 1 − β

 ,
with 0 < α, β < 1

2 , so that Pr(zt � zl |zt−1 � zh) � α and Pr(zt � zh |zt−1 � zl) � β. The

stationary distribution of {zt} γ is a row vector (γh , γl) �
( β
α+β ,

α
α+β

)
, and I normalize zs so that

Ezt � γh zh + γl zl � 1. Intuitively, the shock becomes more persistent as α and β become closer to

0. Indeed, the first-order autocorrelation coefficient between zt−1 and zt equals to 1− (α+ β) > 0.42

This setup captures the idea that boom periods tend to persist over time. As before, Ce , l0, lm ,

and π(l) are independent of z, and hence do not change over time.

42See the technical lemma D.2 in the online Appendix D.
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Even though the shock is persistent, the optimal action profile {l∗s } in the optimal SSPE depends

only on the state of the economy. Under the one-to-one map vs � zsπ(ls), the maximization

problem associated with the optimal SSPE becomes a linear program. In contrast to the case of an

iid shock, when {zt} is persistent, the expected continuation value from any time-invariant value

profile {vs} implied by an action profile depends on the current state s. Let Vs denote the expected

continuation value in state s. Exploiting the recursive structure of the setup, Vs is linked to vs

through the following matrix equation

V �
1
N
(P + δP2

+ δ2P3
+ · · · )v �

1
N

P(1 − δP)−1v ,

where V � (Vh ,Vl)⊤ and v � (vh , vl)⊤ are both column vectors.

Since γP � γ, the expected discount value of any bank γV equals to 1
N(1−δ)γv. As the IIC in

state s is equivalent to N(1 − δ)Vs ≥ χ(N, δ)vs , the linear program associated with the optimal

SSPE can be written in the following compact form:

max
v∈[0,zhπm]×[0,zlπm]

γv s.t. (1 − δ)P(1 − δP)−1v ≥ χ(N, δ)v ,

where πm � π(lm). The following proposition characterizes the optimal SSPE; the proof is in

Appendix A (p.48).

Proposition 7. Suppose {zt} follows a two state Markov chain with the transition matrix P and denote by

l∗s ∀s � h , l the action profile in the optimal SSPE.

(a) If χ(N, δ) ≤ χ̄ then l∗s � lm and π(l∗s ) � πm ∀s � h , l.

(b) If χ̄ < χ(N, δ) ≤ 1 then l∗l � lm and l∗h is such that r0 < r∗h < r∗l � rm and q0 < q∗h < q∗l � qm .

Moreover 0 < π(l∗h) < π(l
∗
l ) � π

m while zhπ(l∗h) ≥ zlπ(l∗l )

(c) If 1 < χ(N, δ) then l∗s � l0 and π(l∗s ) � 0 ∀s � h , l.

The cutoff value χ̄ �
ρ(1−δ)
1−δρ +

1−ρ
1−δρ

1
zh

and satisfies 1
zh

≤ χ̄ < 1 ∀0 ≤ ρ < 1.

As demonstrated by this proposition, the qualitative feature of the optimal SSPE with a persis-

tent shock remains the same as the case with an iid shock,43 and similar results hold for persistent

43This result also complements the finding of Kandori (1991) who showed that countercyclical pricing still holds in

the setting of Rotemberg and Saloner (1986) with a general Markov shocks for two limiting cases: (a) δ → (N − 1)/N

so that χ(N, δ) � 1; and (b) δ → 1 and N(1 − δ) remains a constant M between 0 and 1 so that χ(N, δ) converges to

M(N − 1)/N from above. See Liu (2014) for more discussion.
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collateral value shock and risk distribution shock as well. Exactly the same intuition explained

above for the countercyclical lending policies applies here: increased deviation incentive during

booms forces the banking sector to compete more as long as χ(N, δ) lies in an interim range. The

main difference relative to the iid shock case is the diminished range of χ(N, δ) displaying counter-

cyclical lending policies. In the iid case, the lower bound for such χ(N, δ) is 1/zh . In contrast, in the

persistent case, the lower bound χ̄ is higher then 1/zh and is increasing in ρ. Indeed, limρ→1 χ̄ � 1,

hence the optimal SSPE displays either joint monopoly or perfect competition. Intuitively, as ρ

converges to 1, uncertainty vanishes and the standard result of a deterministic repeated game

emerges.

V Discussions of the Model

In this section, I will first discuss a number of extensions and variations of the benchmark setting

presented in Section II, so that I can assess the robustness of the benchmark setting. In the last

subsection, I will discuss the welfare prediction of the basic framework in both the static and the

dynamic setup.

V.A Characteristics of Borrower and Project

I have considered the simplest case of a borrower’s type distribution, a binary one, in the bench-

mark setting. This particular information structure can be easily generalized to the case where a

borrower’s type θ is continuous distributed over interval [0, 1] under some distribution function

F(θ) (see, e.g., de Meza and Webb 1987). Keep the investment technology the same, i.e., for a θ

borrower (project) the output equals to x with probability θ and c with probability 1 − θ. It is

clear that there is a cutoff level 0 < θ̂ < 1 such that NPVθ � θx + (1 − θ)c − 1 ≥ 0 if and only if

θ > θ̂. Now, call any borrower with θ ≥ θ̂ a g borrower and with θ < θ̂ a b borrower, and let

µ̄ � 1 − F(θ̂), θg ≡ E[θ |θ ≥ θ̂], and θb ≡ E[θ |θ < θ̂]. Then this generalized setting is identical

to the benchmark setting as long as I assume that the screening technology continues to work the

same, separately on g borrowers and b borrowers:

Pr(ϕ � G |θ ≥ θ̂) � Pr(ϕ � B |θ < θ̂) � q ,

for a given intensity q. Continue to assume that θ shock is iid across a continuum of borrowers,

then a bank lending decision will again depends only on the screening result ϕ. This is so because

the variation in the particular realization θ for an individual borrower is averaged out within all g

or b borrowers, thus a bank’s payoff from lending depends only on µ̄, θg , θb , and q as before.

34



Along the same line, the benchmark setting can be further generalized to accommodate a

continuously distributed end-of-period output for each investment project. More specifically,

let θ be distributed according F(θ) as well, and suppose that the output y of each θ borrower

(project) is distributed over [0, x] according to some distribution function H(y , θ). Moreover, θ is

no longer assumed to stand for the success probability of a project, but instead becomes an index

for the riskiness of projects. A particular way of indexation is to assume H(y , θ) satisfies the first

order stochastic dominance in θ, so that NPVθ �
∫ x

0 ydH(y , θ) − 1 is continuously increasing in

θ.44 Let θ̂ be the threshold level above which NPVθ becomes positive, and call borrowers with

θ ≥ θ̂ type g while those with θ < θ̂ type b. Assuming again limited liability on the part of

borrowers, the unit expected payoff from lending to a θ borrower at interest rate r ∈ [1, x] is

ηθ(r) � r[1 − H(r, θ)] +
∫ r

0 ydH(y , θ).45 Thus the unit expected payoff from lending to either g

or b borrowers, ηg(r) ≡ E[ηθ(r)|θ ≥ θ̂] and ηb(r) ≡ E[ηθ(r)|θ < θ̂], can be computed accordingly.

Under the iid assumption on the θ shock and the output of each individual project, and continue

to use the screening technology as specified above, all results regarding screening and lending,

hence the equilibrium behavior of the benchmark setting, are preserved.

V.B An Alternative Lending Process

In the benchmark setting, banks are required to post contracts which specify both r and q at the

same time, which amounts to committing to a particular level of screening effort during the entire

process of creditworthiness testing on any borrower who enters into such a process. Two implicit

assumptions are buried into such a specification: first, a commitment technology is available to each

bank; and second, each bank is willing to honor a commitment given the commitment technology.

The latter point is equivalent to that a commitment by a bank is credible. In reality, credibility

on a commitment to some particular screening intensity q by any bank is evidently questionable.

The argument presented in Section III.D for restricting the analysis to the efficient contract space

Ce just exploits this built-in weakness. However, a more fundamental point associated with the

commitment problem is the availability of such a technology. In particular, one is compelled to

44Alternatively, as in Stiglitz and Weiss (1981) and Bester (1985), one may assume H(y , θ) satisfies the second order

stochastic dominance in θ while NPVθ is the same for all θ.

45Here I assume again that lending takes the form of a simple loan contract with gross interest rate r. Indeed, as

output level y is publicly verifiable, an assumption I maintain here, all expected payoff that is achievable by an arbitrary

(contingent) contract R(y) is also achievable by a simple loan contract. When y is not verifiable, the optimal contract

design problem arises, as analyzed in Townsend (1979), Diamond (1984), and Gale and Hellwig (1985).
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think about the situation where the commitment technology regarding q does not exist altogether,

which amounts to modify the lending process such that decisions on q can only be made by banks

right before any screening activity.

From a game theoretic point of view, this is equivalent to a modification of the extensive form

of the lending game. In particular, banks first offer contracts only in interest rates r, followed by

borrowers choosing which contracts to apply for, and lastly banks make whatever screening and

lending decisions on any borrowers they encounter. Given this modified game tree, sequential

rationality requires the bank which is choosing q to take into account its choice of r already made

in the previous information set. More specifically, let µ(r) denote the (common) prior belief on

the probability that a borrower applying for the loan r is type g. For any choice of q ∈ Q, let

νϕ(q , r) � νϕ(q , µ(r)) denote the bank’s posterior conditional on the screening result ϕ. It follows

that the unit expected payoff of the bank from lending to a ϕ borrower is

ηϕ(r, q) � νϕ(q , r)ηg(r) +
(
1 − νϕ(q , r)

)
ηb(r),

and thus the unit expected payoff from lending at r, gross of the screening cost, is

η(r, q) � Pr(G)max
{
ηG(r, q), 0

}
+ Pr(B)max

{
ηB(r, q), 0

}
,

where Pr(ϕ) is a function of q and µ(r). Since choosing q is the last nontrivial decision for the

bank (approval decision is trivial once knowing ηϕ), sequential rationality implies that the bank

will choose q to maximize the net payoff η(r, q) − C(q).
Up to now, the above formulation of a bank’s choice of q looks like the same as those already

discussed in Section III.D; but there remains a crucial difference. In Section III.D, the belief µ(l)
at any candidate equilibrium contract l � (r, q) ∈ C has been fixed at µ̄, by Lemma 2 in Section

III.B. Yet an arbitrary belief system µ(·) is used here. To pin down the belief system, at least along

any equilibrium path, note that the conclusion of Lemma 2 is still applicable to this modified

lending game. No matter in which order the banks make decisions on r and q, any borrower

can always correctly predict the equilibrium choices, i.e., (r, q) pairs, by the banks; this is nothing

but the premise of Nash equilibrium. Consequently, the same proof of Lemma 2 applies to pairs

of (behavioral) strategies (r, q), and therefore µ(r, q) � µ̄ for any (r, q) to emerge in a candidate

equilibrium. Furthermore, since all borrowers make their choices of loans r before any bank

chooses q, consistency of beliefs along the game tree implies that µ(r) � µ(r, q) regardless of a

bank’s choice of q. Thus I conclude that along any equilibrium path, µ(r) � µ̄when r is a candidate

equilibrium contract.
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Once µ(r) � µ̄ is pinned down along any equilibrium path of the modified lending game, the

optimal choice of q by any bank at r has to be qe(r), i.e., the efficient screening intensity defined

in Section III.D. As a final remark, because the modified lending game has the same normal form

representation as the original lending game, the invariance principle of Kohlberg and Mertens

(1986) implies that, for the original lending game, any “reasonable” equilibrium satisfying their

stability criterion features a contract lying in the efficient contract space Ce . This justifies my

restriction to Ce in Section III.D.

V.C Other Forms of Screening Technologies

In this subsection, I will discuss in some detail the specification of the screening technology. The

benchmark specification of the screening technology in Section II.B takes a very simple, symmetric

form: Pr(G |g) � Pr(B |b) � q. Moreover, the screening technology is applied on a borrower by a

bank only once in each period. This feature is closely related to the exclusivity assumption, that a

borrower can apply for at most one loan in a given period. In what follows, I shall consider some

alternative specifications of the screening technology.

Asymmetric Screening Given a binary-type-binary-signal structure, a general screening technol-

ogy is described by the conditional probabilities Pr(G |g) � qg and Pr(B |b) � qb . Examples of

asymmetric screening include: Broecker (1990) where qg , qb are both fixed numbers and the

screening is costless; and Gehrig (1998) and Kanniainen and Stenbacka (1997) where qg(e) and

qb(e) are two different functions of a common argument e, with per unit screening cost of C(e).46
By introducing proper assumptions, one can extend the benchmark setting by replacing the simple

symmetric screening technology with a general form asymmetric screening technology. However,

such an extension does not add much insight into the determination and the dynamics of the

lending policies, especially the lending standards. Thus I shall not pursue it further.

Sequential Screening As already mentioned, the exclusivity assumption used in the benchmark

setting is widely adopted in the literature on adverse selection problems. The central feature of

the exclusivity assumption is that a borrower will be screened by only one bank within a period.

46For asymmetric screening technology with variable screening intensity and variable upfront cost, it is not meaningful

to suppose that qg and qb can be chosen independently with independent cost function Cg(qg) and Cb(qb). The reason

is that with the screening bank does not know a priori the private type of the borrower who is applying for a loan at this

bank. Intuitively, variable cost of screening comes from the variation in effort (time, carefulness, etc.) that loan officers

exert in reviewing an application. So that once they decide how much effort to exert, certain amount of upfront cost is

incurred regardless of the underlying true type of an applicant.
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Given that a borrower denied by a bank in the current period may apply again in the next period,

the exclusivity assumption does not restrict the interpretational power of the benchmark model.

Nonetheless, I shall briefly discuss some alternative setups with multiple screenings (within a

period). A first alternative along this line is sequential screening.

A most straightforward extension to the benchmark setting is to allow a borrower to apply for

another loan from the set of loans offered by all banks within the same period. This extension

barely changes the results established in Section III. Since approved borrowers have no incentive

to apply for a different loan — the loan they obtained is of the lowest interest rate — only denied

borrowers will apply again. This pins down the prior on the borrower distribution held by the

banks screening borrowers a second time, i.e., ν(B).47 For completeness, one needs to specify as well

how the second-round screening will work, conditional on knowing the results of the first-round

screening. If the second-round screening is independent of the first round, then a new signal will

be produced given the prior ν(B), and further posterior can be calculated. In the opposite case, if

the second-round screening is perfectly correlated with the first-round, then no new information

will be obtained and the lending decision will only be based on the prior ν(B). Either way, the

equilibrium results of the benchmark setting remain mostly unchanged.

The preceding argument presumes that all the borrowers do choose the loan lmin in the first-

round, even with the opportunity of applying for another loan later. The presence of the second-

round screening opens the possibility that the borrowers, especially the good ones, may choose

first to apply for a loan with higher than minimum interest rate and preserve the option of applying

for lmin in the second round. However, such a strategy will not be beneficial to the borrowers,

even under the assumption that the first-round screening results are verifiable to the screening

banks in the second-round. The reason is that, anticipating the banks in the second-round free-

ride costly first-round screening results, no banks will incur such costs in the first place, hence

no useful information will ever be produced in the first-round (see Anand and Galetovic 2000

for an elaboration on this point in a setting similar to the two-rounds screening considered here).

Furthermore, under the assumption that the first-round results are unverifiable to the banks in

the second-round, the argument for the approved borrowers not to choose applying for another

loan is even simpler: being pooled with the denied borrowers in the second round, the approved

borrowers gain nothing more than what they can get in the first-round.

47Models featuring sequential screening (each time by one bank) in similar setups include Direr (2008) and Gehrig

and Stenbacka (2004, 2011).
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Simultaneous Screening Simultaneous screening by multiple banks offers yet another alternative

to the benchmark setting. In such a setup, a borrower applies for loans from multiple banks

and these banks screen the borrower simultaneously, after which the borrower chooses the most

favorable loan from a bank that approves the borrower. As for the case of sequential screening,

one needs to specify how such simultaneous screening works. There are two natural specifications

to consider. The first one is where the screening results are perfectly correlated across banks.

However, such a specification is at odds with the premise that each bank chooses the screening

intensity of its own screening process. The second specification is where the screening results are

independent across banks, conditional on the true type of a borrower.48 Such a specification is

compatible with variable and costly screening intensity choice. However, by making the stage game

analogous to a common value auction game, it complicates significantly the equilibrium pricing

strategy, letting alone the equilibrium screening strategy. More specifically, when the screening

result is a discrete signal, only mixed strategy equilibria exist;49 when the screening result is a

continuous signal, pure strategy equilibria may exist but are typically intricate functions of the

signal realization.50

V.D Monotonicity of Borrower’s Choice

Lemma 6 of Section III.E shows that a good borrower always prefers a loan with lower interest

rate over the efficient contract space. This result is a direct implication of Assumption 3, which

states that the second order derivative of the convex screening cost function, C′′(q), is bounded

from below by 2[µ̄ − (1 − µ̄)θb/θg]NPVg for all q ∈ Q � [1/2, 1]. Moreover, Assumption 1 implies

µ̄ − (1 − µ̄)θb/θg > 0, therefore the lower bound on C′′(q) is not trivial. In this sense, Assumption

3 is a strong assumption.

48Such a conditional independent screening specification has been widely used in the literature: first introduced in

the seminal work of Broecker (1990), and followed by Riordan (1993), Thakor (1996), Cao and Shi (2001), Dinç (2000),

Ruckes (2004), Hauswald and Marquez (2003, 2006), Ogura (2006).

49This is the case for the models of Broecker (1990), Cao and Shi (2001), Ruckes (2004), and Hauswald and Marquez

(2003, 2006). The relationship banking model studied by Rajan (1992) also features a unique mixed strategy equilibrium

where an inside bank and outside bank simultaneously bid for a borrower. The only exception is Thakor (1996), where a

unique pure strategy equilibrium emerges. However, Thakor assumes a particular extensive form of the lending game,

allowing a bank to know how many other banks have obtained good signals on a borrower before making final lending

decision. This effectively breaks down the “winner’s curse” problem that underlies the nonexistence of pure strategy

equilibria of the papers just mentioned.

50See Riordan (1993), Dinç (2000), and Ogura (2006).
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However, it is possible to weaken Assumption 3 and still have a good borrower to prefer a lower

interest rate. Over the efficient contract space Ce � {(r, qe(r))}, the expected payoff for a good

borrower getting a loan (r, qe(r)) is U g(r) � u g(r)qe(r) � [θg(x − r)]qe(r), thus

dU g(r)
dr

� −θg qe(r) + u g(r)
µ̄θg − (1 − µ̄)θb

C′′(qe(r)) .

For the validity of all the results of the benchmark setting, it suffices to have dU g(r)/dr < 0 over

[r0 , x]. Since u g(x) � 0, it follows that dU g(x)/dr � −θg qe(x) < 0, which suggests that dU g(r)/dr

is always negative for r close to x. Consequently, for any calibration such that r0 is close to x,

dU g(r)/dr is guaranteed to be negative over [r0 , x] even without Assumption 3.

VI Concluding Remarks

Two empirical regularities of bank lending practices stand out: interest rate spreads on loans and

lending standards both are lower during booms than in recessions. I provide a unified explanation

of these two facts, stressing procyclical competition of the banking sector as the driving force. I first

develop a game of bank lending with screening. Borrowers have private information about the

creditworthiness of their projects. Banks rely on a screening technology to distinguish good projects

from bad ones by choosing the screening intensity, which I identify with the lending standards.

Because screening is costly, in the optimum the screening intensities chosen by banks are always

less than perfect. Moreover, the screening intensity, and hence the lending standards, determined

in this way are positively correlated with the profitability on loans. Next, this lending game is

repeated over time, and a bank’s payoff is affected by various aggregate shocks which capture

various aspects of the business cycle. I show that in the optimal subgame perfect equilibrium of

this repeated game, better business conditions during booms increase bank’s incentive to deviate

ceteris paribus, thus forcing banks to compete more to shrink the profit margin and to restore the

equilibrium incentive constraint. As a result, banks charge lower interest rates and impose looser

standards during booms, while the opposite happens during recessions.
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Appendix

A Proofs

Denote by IntXthe interior of a set Xand ∂x f (x , y) the partial derivative of a differentiable function

f (x , y)w.r.p. to x. The following lemma summarizes various properties of the benchmark screening

technology, where νϕ(q , µ) � Pr(g |G, q , µ) for ϕ ∈ Φ � {G, B}.

Lemma A.1. ∀q ∈ Q and 0 < µ < 1 it follows that

(a) νϕ(q , µ) is continuous, νϕ
( 1

2 , µ
)
� µ ∀ϕ ∈ Φ, νG(1, µ) � 1, νB(1, µ) � 0;

(b) ∂qνG(q , µ) > 0, ∂qνB(q , µ) < 0, ∂µνϕ(q , µ) > 0 ∀ϕ ∈ Φ; and

(c) 1 > νG(q , µ) > µ > νB(q , µ) > 0 ∀q ∈ IntQ.

And when q < 1 there is νϕ(q , 1) � 1 and νϕ(q , 0) � 0 ∀ϕ ∈ Φ.

Proof. Part (a) is straightforward to verify, and part (c) follows from part (b). For (b), note that

νG(q , µ) � µ
/ (
µ + (1 − µ)1−q

q

)
. Since (1 − q)/q � 1/q − 1 is decreasing in q, νG(q , µ) is increasing

in q. For νB(q , µ), note that q/(1 − q) is increasing in q, so that νB(q , µ) � µ
/ (
µ + (1 − µ) q

1−q

)
is

decreasing in q. Analogous reasoning proves that νϕ(q , µ) is strictly increasing in µ. When q < 1,

the result follows trivially from the expression of νϕ(q , µ). Q.E.D.

Proof of Lemma 1. Consider first the case where r > r and q < 1. As r > r, ηg(r) > 0 > ηb(r); and

as q < 1, νϕ(q , µ) is strictly increasing in µwith νϕ(q , 1) � 1 and νϕ(q , 0) � 0. Therefore, ηϕ(l, µ) is

also strictly increasing in µ, and ηϕ(l, µ) is negative for µ sufficiently close to 0 and non-negative

for µ sufficiently close to 1, ∀ϕ ∈ Φ. Moreover, as νG(q , µ) > νB(q , µ), it follows that for interim µ,

ηG(l, µ) > 0 > ηB(l, µ). When r � r, then ηg(r) � 0, so that ηϕ(l, µ) < 0 ∀ϕ, unless either µ � 1

with ηϕ(l, µ) � 0 or q � 1 and µ < 1 with ηG(l, µ) � 0 and ηB(l, µ) < 0. Finally, when q � 1,

ηG(l, µ) � ηg(r) ≥ 0 and ηB(l, µ) � ηb(r) < 0 ∀r ≥ r and µ. Q.E.D.

Proof of Lemma 2. First note that as r < x borrower’s expected payoff is strictly positive whenever

approved.

As an immediate implication, separating outcome is impossible because all bad borrowers will

be denied as they are separated from good ones.

The remaining possibility is mixed outcome. To fix notation, suppose this outcome is associated

with two loans lj � (r j , q j) and common belief µ j � µ(lj) for j � 1, 2. Let pθj � pθ(lj) for j � 1, 2
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be corresponding approval probabilities. First I claim that it has to be the case where p g
1 , p

g
2 > 0.

Suppose on the contrary, p g
1 � 0, then no good borrower will choose l1. By the definition of mixed

outcome, bad borrowers must choose l1 by positive probability, but then this implies µ1 � 0, which

leads all banks to deny any borrower at l1, i.e., pb
1 � 0. Yet by assumption q2 < 1, thus pb

2 � 1−q > 0

or 1, so that all bad borrowers applies only for l2. This contradicts with l1 , l2 be associated with a

mixed outcome.

Since good borrowers are indifferent between l1 and l2, u g(r1)p g
1 � u g(r2)p g

2 > 0. Without loss

of generality, suppose r2 < r1. Then p g
2 < p g

1 as r2 < r1 implies u g(r2) > u g(r1). Accordingly, there

are two cases to consider.

Case 1: p g
1 � 1. It follows that pb

1 � 1, p g
2 � q2 < 1, and pb

2 � 1 − q2 > 0 in this case.

For this to be an equilibrium outcome, it is necessary for bad borrowers to be indifferent, i.e.,

ub(r2)(1 − q2) � ub(r1). Also, u g(r2)q2 � u g(r1) for good borrowers. Rearranging these two

equalities yields
x − r1
x − r2

� 1 − q2 < q2 �
x − r1
x − r2

,

as q2 > 1
2 . This is clearly impossible.

Case 2: p g
1 � q1 < 1. It follows that pb

1 � 1 − q1 > 0, p g
2 � q2 < q1, and pb

2 � 1 − q2 > 1 − q1.

Indifference between l2 and l1 implies ub(r2)(1 − q2) � ub(r1)(1 − q1). This is impossible since

uθ(r2) > uθ(r1) ∀θ and 1 − q2 > 1 − q1 > 0. Q.E.D.

Remark. As noted in footnote 17, I assume that banks do not randomize between approval and

denial when ηB(l) � 0, or equivalently, banks do not randomize between pθ � 1, p g � q �

1 − pb , and pθ � 0. This allows me to write down borrower’s incentive constraint as uθ(r1)pθ1 �

uθ(r2)pθ2 , and the result follows. Without this presumption, mixed equilibrium outcome exists as

randomization of bank’s lending decision convexifies borrower’s payoff.

Proof of Lemma 3. Let νϕ(q) � νϕ(q , µ̄), and ηϕ(r, q) � νϕ(q)ηg(r) + (1 − νϕ(q))ηb(r). For r � r

and ηg(r) � 0, there is ηϕ(r, q) < 0 ∀q and ϕ except for ηG(1) � 0. Thus η(r , q) � 0 and qc(r) � 1.

For r > r, ηg(r) > 0 > ηb(r). If r is such that η̄(r) ≥ 0, monotonicity of νϕ(·) implies that

ηG(r, q) ≥ η̄(r) ≥ 0 over Q and there is a unique value of qc(r) < 1 such that ηB(r, q) < 0 iff

q > qc(r). As a result, for q ≤ qc(r), no borrower is denied, hence η(r, q) � η̄(r); and for q ≥ qc(r),
B borrowers are denied so that

η(r, q) � Pr(G)ηG(r, q) � ∆(r)q + (1 − µ̄)ηb(r).
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In contrast, if r is such that η̄(r) < 0, monotonicity of νϕ(·) implies that ηB(r, q) ≤ η̄(r) < 0 over Q

and there is a unique value of qc(r) < 1 such that ηG(r, q) ≥ 0 iff q ≥ qc(r). As a result, for q < qc(r),
no borrower is approved, hence η(r, q) � 0; and for q ≥ qc(r), G borrowers are approved, so that

again η(r, q) � ∆(r)q + (1 − µ̄)ηb(r). Q.E.D.

Proof of Lemma 4. To circumvent complications due to the kink of η(r, q), let

η̃(r, q) � ∆(r)q + (1 − µ̄)ηb(r),

π̃(r) � max
q∈Q
η̃(r, q) − C(q).

It is easily verified that π(r) � max
{
π̃(r), η̄(r), 0

}
. ∀r ∈ R, η̃(r, q) is linear in q and C(q) is strictly

convex, so that ϖ(r, q) ≡ η̃(r, q) − C(q) is strictly concave in q. As ∆(r) > 0, ∂qϖ
(
r, 1

2
)
� ∆(r) > 0.

Moreover, ∆′(r) � µ̄θg −(1− µ̄)θb > 0 by part (ii) of Assumption 1, so that∆(r) is strictly increasing

in r, hence ∆(r) ≤ ∆(x), which implies ∂qϖ(r, 1) � ∆(r) − C′(1) ≤ ∆(x) − C′(1) < 0 by Assumption

2. As a result, first order condition associated with π̃(r) holds as equality

∆(r) � C′(qe).

This in turn defines qe(r) � (C′)−1(∆(r)), which is increasing as both C′(·) and ∆(·) are increasing

function. Observe that 0 � C′ ( 1
2
)
< ∆(r) ≤ ∆(r) ≤ ∆(x) < C′(1), it follows that 1

2 < qe(r) < 1.

By the Envelope theorem, π̃′(r) � µ̄qe(r)θg+(1−µ̄)(1−qe(r))θb > 0. Since 1
2 < qe(r) < 1, η̄ ′(r) �

µ̄θg+(1−µ̄)θb > π̃(r). Combining with π̃(x) ≥ η(x , 1)−C(1) > max{η̄(x), 0} ≥ η̄(x)by Assumption

2, this then implies that π̃(r) > η̄(r) over R. As a consequence, π(r) � max
{
π̃(r), 0

}
. Clearly, π̃(r)

is continuous and strictly increasing with π̃(x) > 0 and π̃(r) < 0 as η̃(r , q) ≤ η̃(r , 1) � 0, therefore

there exists a unique r0 ∈ IntR such that π̃(r0) � 0. If r < r0, 0 � π(r) � maxq η(r, q) − C(q), which

is achieved at q �
1
2 as C

( 1
2
)
� 0. If r > r0, π(r) � π̃(r) with the maximizing q � qe(r). If r � r0,

both q �
1
2 and qe(r0) achieve π(r0) � 0. Q.E.D.

Proof of Lemma 5. For a loan contract l � (r, q) with r ≥ r0 and q � qe(r) > 1
2 , unit payoff from

lending is

η(l) > η(l) − C(q) � π(r) > max{η̄(r), 0},

thus all B borrowers are denied credit as argued in the proof of Lemma 3 above. Q.E.D.

Proof of Lemma 6. The derivative of U g(r) is

dU g(r)
dr

� −θg qe(r) + u g(r)
µ̄θg − (1 − µ̄)θb

C′′(qe(r)) .
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Clearly, dU g(r)/dr < 0 is equivalent to C′′(qe(r)) >
(
µ̄ − (1 − µ̄)θb/θg )u g(r)/qe(r). Since qe(r) >

1
2 , the RHS of the last inequality is less than 2

(
µ̄ − (1 − µ̄)θb/θg )u g(r), which in turn is less

than 2
(
µ̄ − (1 − µ̄)θb/θg )NPVg as u g(r) ≤ u g(r) � NPVg , therefore Assumption 3 ensures that

dU g(r)/dr < 0. Q.E.D.

Proof of Lemma 7. Suppose {v∗(s)} solves P and V∗ � Ev∗(s). I show first that V∗ � B(V∗).
On the one hand, since V∗ � maxEv(s) subject to all constraints of P, any point {v(s)} in the

constrained set of P satisfies χ(N, δ)v(s) ≤ Ev(s) ≤ V∗ and therefore belongs to the constrained

set of PV∗ , which implies that V∗ ≤ B(V∗). On the other hand, let {v∗∗(s)} denote the solution of

PV∗ , then it satisfies χ(N, δ)v∗∗(s) ≤ V∗ ≤ B(V∗) � Ev∗∗(s), which implies that {v∗∗(s)} belongs to

the constrained set of P and consequently B(V∗) ≤ V∗. I thereby conclude that V∗ is a fixed point

of B(·). Moreover, it follows that V∗ has to be the maximum fixed point, for otherwise a bigger

fixed point of B(·) solves P as well, thus contradicting the optimality of V∗.

Next, observe that the solution of P is unique as long as the solution of PV∗ is also unique.

When S is a discrete set and the probability of each s ∈ S is positive, it is fairly evident that

Pw ∀w ∈ [0,maxs v̄(s)] has a unique solution: for w > 0, Ev(s) is maximized at the extreme point

{v∗(s)} of the constrained set of Pw — a rectangular box — with v∗(s) > 0 ∀s; and for w � 0,

v∗(s) � 0 ∀s. The same intuition holds when S is a continuum set with positive distribution over

S and the solution of Pw is required to be continuous. A rigorous proof of this result is more

involved and is omitted to save space. Also I omit the proof for the existence of a solution to both P

and Pw . Liu (2014) contains the omitted proofs for both results under assumptions more general

than the ones imposed for this lemma. Q.E.D.

Proof of Proposition 1. Let Vf � [0, zhπm] × [0, zlπm] denote the feasible set of (vh , vl). By

Lemma 7, solving for the optimal SSPE is equivalent to finding the maximum fixed point of B(w)
over [0, zhπm] defined by the linear program Pw :

B(w) � max
(vh ,vl)∈Vf

γh vh + γl vl

s.t. χ(N, δ)vh ≤ w and χ(N, δ)vl ≤ w.

Note that γh zhπm + γl zlπm � πm as γh zh + γl zl � 1. Let V∗ denote the maximum fixed point and

(v∗
h , v

∗
l ) denote the solution of PV∗ .

(a) χ(N, δ) ≤ 1/zh . It suffices to consider w ∈ [πm , zhπm]. Since zl < 1 < zh and χ(N, δ)zh ≤ 1,

χ(N, δ)vs ≤ w is satisfied ∀vs ∈ [0, zsπm] and s � h , l. As B(w) � πm , the maximum fixed point is
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V∗ � πm and v∗
h � zhπm and v∗

l � zlπm . Under the one-to-one mapping of zsπ(ls) � vs , it follows

that l∗h � l∗l � lm .

(b) 1/zh < χ(N, δ) ≤ 1. It suffices to consider w ∈ [zlπm , πm]. Since zhχ(N, δ) > 1, χ(N, δ)vh ≤
w is a binding constraint, and v∗

h � w/χ(N, δ). Meanwhile, zlχ(N, δ) ≤ zl , thus v∗
l � zlπm .

It follows that B(w) � γh w/χ(N, δ) + γl zlπm , and therefore the maximum fixed point is V∗ �

γl zl
1−γh/χ(N,δ)π

m , with v∗
h �

γl
χ(N,δ)−γh

zlπm and v∗
l � zlπm .

Under the one-to-one mapping of zsπ(ls) � vs , it follows that the l∗l � lm and l∗h satisfies

r0 < r∗h < rm and q0 � qe(r0) < q∗h � qe(r∗h) < qm � qe(rm), as qe(r) is strictly increasing in r by

Lemma 4.

(c) 1 < χ(N, δ). Since vs ≤ w/χ(N, δ) < w, it follows that B(w) < w ∀w > 0. Thus the only

fixed point is V∗ � 0 with v∗
s � 0. Consequently l∗s � l0

s ∀s. Q.E.D.

Proof of Proposition 2. This is a simple corollary of part (b) of the previous proposition. In the

proof for that part I showed that γl zl
χ(N,δ)−γh

πm . Substituting out γl zl � 1 − γh zh � 1 − z̄ yields

v∗
h �

1 − z̄
χ(N, δ) − z̄/zh

πm ,

and from the one-to-one mapping zhπ∗h � v∗
h , it follows that

π∗h �
1 − z̄

zhχ(N, δ) − z̄
πm .

By assumption, zhχ(N, δ) > 1, therefore 0 < π(l∗h) < π
m . Moreover, as π(le) � π(r, qe(r)) is strictly

increasing over [r0 , x] with a range of [0, πm], the above equation determines a unique l∗h ∈ Ce

such that π(l∗h) � π
∗
h . Lastly, as χ(N, δ), z̄, and πm are all fixed, limzh→∞ π∗h � 0, and since π(le) � 0

only at l0, there is limzh→∞ l∗h � l0. Q.E.D.

Proof of Proposition 3. Denote Vf � [0, πm
h ] × [0, πm

l ] the feasible set of (vh , vl). Following

Lemma 7, the associated linear program Pw is

B(w) � max
(vh ,vl)∈Vf

γh vh + γl vl

s.t. χ(N, δ)vh ≤ w and χ(N, δ)vl ≤ w ,

∀w ∈ [0, πm
h ]. This is almost identical to the one analyzed in the proof of Proposition 1 (p.44).

Thus a similar procedure results in the characterization of π(l∗s ; cs) ∀s � h , l stated in Proposition

3. When π̄m/πm
h < χ(N, δ) ≤ 1, r∗l � x > r∗h > r0

h follows directly from 0 < π(r∗h ; ch) < π(x; ch) and

π(r; ch) is increasing in r. Q.E.D.
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Proof of Lemma 8. Let A � {(r, c)|r0(c) ≤ r ≤ x , c ∈ [cl , ch]} denote the region over which

π(l; c) � π(r; c) is defined. As showed in the text already, ∂cπ(r; c) > 0, so that r1 > r2 follows if

π(r1; c1) � π(r2; c2) as c1 < c2.

Moreover, if ∂c∆(r; c) � µ̄(1 − θg) − (1 − µ̄)(1 − θb) ≤ 0, then ∂c qe(r; c) ≤ 0. Since r1 > r2

and c1 < c2, it follows that q1 � qe(r1; c1) > q2 � qe(r2; c2). Thus the only case needs a proof is

∂c∆(r; c) > 0.

Consider any level curve of π(r; c) within A. Along this curve, π(r; c) is constant, so that the

total differentiation dπ(r; c) � ∂rπ(r; c)dr + ∂cπ(r; c)dc � 0 and the derivative at any point along

this curve is given by

dr
dc

� −∂cπ
∂rπ

� −
µ̄qe(1 − θg) + (1 − µ̄)(1 − qe)(1 − θb)

µ̄qeθg + (1 − µ̄)(1 − qe)θb
< 0,

where qe � qe(r; c). Fix a point (r0 , c0) on this curve. Define a function Γ0(r; c) � ∆(r; c) − ∆(r0; c0)
over A. Then equation Γ0(r, c) � 0 defines a line segment within A according r � κ(c − c0) + r0,

where

κ � −∂c∆

∂r∆
� −
µ̄(1 − θg) − (1 − µ̄)(1 − θb)

µ̄θg − (1 − µ̄)θb
< 0

as µ̄(1 − θg) − (1 − µ̄)(1 − θb) > 0.

I claim that ∂cπ/∂rπ > ∂c∆/∂r∆. For this, observe that

∂cπ
∂rπ

− ∂c∆

∂r∆
�
∂cπ∂r∆ − ∂rπ∂c∆

∂rπ∂r∆
,

of which the numerator is positive, therefore I only need to show that the denominator is positive.

Some tedious algebra confirms that the denominator equals to µ̄(1 − µ̄)(θg − θb) which is indeed

positive as θg > θb .

It follows from the claim that dr/dc < κ < 0. So the level curve going through (r0 , c0)
decreases faster than the line segment defined by Γ0(r, c) as c ≥ c0 increases. In particular, as

(r1 , c1) and (r2 , c2) are on the same level curve, it follows that r2 < r3 where r3 is such that

Γ1(r, c) � ∆(r; c) − ∆(r1; c1) � 0, and hence Γ1(r2 , c2) < 0 as Γ1(r, c2) is increasing in r. As a

result, ∆(r2 , c2) < ∆(r1 , c1). Since qe(r; c) � (C′)−1(∆(r; c)), I conclude that q1 � qe(r1; c1) > q2 �

qe(r2; c2). Q.E.D.

Proof of Proposition 4. When µ̄ ≤ 1−θb

2−θg−θb , ∂c∆(r; c) ≤ 0, and by ∂r∆(r; c) > 0, it follows that

∆(r∗h ; ch) < ∆(r∗l ; cl) as r∗h < r∗l � x. Since qe(r; c) � (C′)−1(∆(r; c)) is increasing in∆, q∗h � qe(r∗h ; ch) <
qe(r∗l ; cl) � q∗l .
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When µ̄ > 1−θb

2−θg−θb , ∂c∆(r; c) > 0. Thus the line segment defined by 0 � Γl(r, c) � ∆(r; c) −
∆(r∗l ; cl) within A (see the proof of Lemma 8 for the notation) is downward sloping, goes through

(r∗l ; cl) � (x; cl), and intersects with line c � ch at a unique point (r̂ , ch) with r̂ � x − κ(ch − cl) < x.

From the proof of Lemma 8, it is clear that the unique r l
h such that π(r l

h ; ch) � π(x; cl) is smaller

than r̂.

Following the same procedure as in the proof of Proposition 1, it can be established that

π(l∗h ; ch) � π(r∗h ; ch) �
γl

χ(N, δ) − γh
πm

l .

As χ(N, δ) varies over [π̄m/πm
h , 1], π(r

∗
h ; ch) ranges over [πm

l , π
m
h ], and consequently r∗h has a range

of [r l
h , x] as π(r; ch) is strictly increasing in r. Given that r l

h < r̂ < x, ∆(r∗h ; ch) > ∆(r̂; ch) � ∆(x; cl)
if r∗h > r̂, ∆(r∗h ; ch) � ∆(r̂; ch) � ∆(x; cl) if r∗h � r̂, and ∆(r∗h ; ch) < ∆(r̂; ch) � ∆(x; cl) if r∗h < r̂, which

results in the desired characterization of q∗h and q∗l .

Lastly, as χ(N, δ) is sufficiently close to 1, π(r∗h ; ch) is close to πm
l , and thereby r∗h is close to r l

h

and smaller than r̂. As a result, q∗h is always smaller than q∗l . Q.E.D.

Proof of Proposition 5. Denote Vf � [0, πm
h ] × [0, πm

l ] the feasible set of (vh , vl). Following

Lemma 7, the associated linear program Pw is

B(w) � max
(vh ,vl)∈Vf

γh vh + γl vl

s.t. χ(N, δ)vh ≤ w and χ(N, δ)vl ≤ w ,

∀w ∈ [0, πm
h ]. The characterization of π(l∗s ) and r∗s ∀s � h , l follows the same procedure as in

the proof of Proposition 1. In particular, r∗h < r∗l � x when π̄m/πm
h < χ(N, δ) ≤ 1 follows from

∂rπ(r; µ̄h) > 0 and π(r∗h ; µ̄h) < π(x; µ̄h) � πm
h .

To characterize q∗s , let ∆(r; µ̄) � µ̄ηg(r) − (1 − µ̄)ηb(r) and observe that ∂r∆(r; µ̄) � µ̄θg − (1 −
µ̄)θb > 0 by assumption and ∂µ̄∆(r; µ̄) � ηg(r)+ ηb(r) ≤ 0 by the extra condition ηg(x)+ ηg(x) ≤ 0.

For χ(N, δ) in any region, r∗h ≤ r∗l always holds, therefore q∗h � qe(r∗h ; µ̄h) ≤ qe(r∗l ; µ̄l) � q∗l holds

as qe(r; µ̄) � (C′)−1(∆(r; µ̄)) and ∆(r∗h ; µ̄h) ≤ ∆(r∗l ; µ̄l). In addition, strictly inequality q∗h < q∗l holds

except for the case where r∗s � x ∀s � h , l and ηg(x) + ηb(x) � 0. Q.E.D.

Proof of Proposition 6. Let Vf � [0, v̄h] × [0, v̄x] × [0, v̄l] denote the feasible set of (vh , vx , vl).
Following Lemma 7, the associated linear program Pw is

B(w) � max
(vh ,vx ,vl)∈Vf

γh vh + γx vx + γl vl

s.t. χ(N, δ)vh ≤ w , χ(N, δ)vx ≤ w , and χ(N, δ)vl ≤ w ,
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∀w ∈ [0, v̄h]. Let V∗ denote the maximum fixed point of B(w) and (v∗
h , v

∗
x , v∗

l ) denote the solution

of PV∗ .

(a) χ(N, δ) ≤ v̄/v̄h . It suffices to consider w ∈ [v̄ , v̄x]. As v̄h > v̄x > v̄l , it follows that

χ(N, δ)vs ≤ χ(N, δ)v̄s ≤ v̄ ≤ w, so that V∗ � v̄ is the maximum fixed point of B(w) and v∗
s � lm

s ∀s.

(b) v̄/v̄h < χ(N, δ) ≤ [(ξh + ξx)v̄x + ξl v̄l]/v̄x . It suffices to consider w ∈ [(ξh + ξx)v̄x + ξl v̄l , v̄].
As v̄/v̄h < χ(N, δ), χ(N, δ)vh ≤ w is a binding constraint, so that v∗

h � w/χ(N, δ). Meanwhile,

since v̄l < v̄x , χ(N, δ) ≤ [(ξh + ξx)v̄x + ξl v̄l]/v̄x , and w ≥ [(ξh + ξx)v̄x + ξl v̄l], there is v∗
x � v̄x and

v∗
l � v̄l . As a result, B(w) � ξh w/χ(N, δ) + ξx v̄x + ξl v̄l , and the V∗ is determined by V∗ � B(V∗).

Solving for this equation, I obtain V∗ � ξx v̄x+ξl v̄l
1−ξh/χ(N,δ) , and accordingly v∗

h �
ξx v̄x+ξl v̄l
χ(N,δ)−ξh

.

It can be easily verified that v∗
h < v̄h as v̄/v̄h < χ(N, δ). The same reasoning as for Proposition

1 establishes that r∗h < r∗x � x and q∗h < q∗x . Moreover, since µ̄ ≤ 1−θb

2−θg−θb , the same reasoning as for

Proposition 4 establishes that q∗x < q∗l . This completes the proof for part (b).

(c) [(ξh + ξx)v̄x + ξl v̄l]/v̄x < χ(N, δ) ≤ 1. It suffices to consider w ∈ [v̄l , (ξh + ξx)v̄x + ξl v̄l].
As [(ξh + ξx)v̄x + ξl v̄l]/v̄x < χ(N, δ), χ(N, δ)vs ≤ w is binding for s � h , x, thus v∗

s � w/χ(N, δ).
Meanwhile, as χ(N) ≤ 1 and w ≥ v̄l , there is v∗

l � v̄l . It follows that B(w) � (ξh + ξx)w/χ(N, δ) +
ξl v̄l , and V∗ satisfies V∗ � B(V∗). As a result, V∗ �

ξl v̄l
1−(ξh+ξx)/χ(N,δ) , and accordingly v∗

h � v∗
x �

ξl v̄l
χ(N,δ)−(ξh+ξx) .

Under the one-to-one mapping vs � zsπ(ls ; cs), it follows that π(l∗h ; ch) < π(l∗x ; ch) as v∗
h � v∗

x .

Therefore the same reasoning as for Proposition 1 establishes that r∗h < r∗x and q∗h < q∗x . Moreover,

it can be easily verified that v∗
x < v̄x < v̄h as [(ξh + ξx)v̄x + ξl v̄l]/v̄x < χ(N, δ), so that r∗x < r∗l � x.

Lastly, since µ̄ ≤ 1−θb

2−θg−θb , the same reasoning as for Proposition 4 establishes that q∗x < q∗l . This

completes the proof for part (c).

(d) 1 < χ(N, δ). The proof is almost identical to the one for Proposition 1. Q.E.D.

Proof of Proposition 7. Straightforward calculation shows that

(1 − δP)−1
�


1 − δ(1 − β) δα

δβ 1 − δ(1 − α)

 ,
so that

(1 − δ)P(1 − δP)−1 ≡

ζh ζl

ξh ξl

 � 1
1 − δρ


1 − δρ − α α

β 1 − δρ − β

 .
Since α, β < 1

2 and ρ � 1 − α − β > 0, 1 − δρ − α � (1 − α)(1 − δ) + δβ > 0, so is 1 − δρ − β.
Note that ζh + ζl � ξh + ξl � 1, thus (1 − δ)P(1 − δP)−1 is a transition matrix as well. Letting
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Vf � [0, zhπm] × [0, zlπm], I write the linear program associated with the optimal SSPE explicitly

as

max
(vh ,vl)∈Vf

γh vh + γl vl

s.t. Vh : [χ(N, δ) − ζh]vh ≤ ζl vl and Vl : [χ(N, δ) − ξl]vl ≤ ξh vh ,

where Vh , Vl ⊂ Vf denote the constraint sets of the IIC in state h , l. For expositional purpose, I

first prove part (c), followed by (a) and (b). To simplify notation, denote χ(N, δ) by χ; accordingly,

let κh � (χ − ζh)/ζl and ξh/(χ − ξl) whenever χ − ξl , 0.

Part (c) χ > 1. In this case, both κh and κl are positive. It is easy to see geometrically that

for Vh ∩ Vl to contain points other than (0, 0) the inequality κh ≤ κl must hold. However, this

is impossible since χ > 1 implies that κh > 1 > κl . Thus in this case Vh ∩ Vl � (0, 0), i.e., the

constraint set is a singleton at the origin.

Part (a) χ ≤ χ̄. First I show in this case that (zhπm , zlπm) ∈ Vh . Observe that this is true iff

κh ≥ zl/zh , which in turn is equivalent to

χ ≥ ζh + ζl zl/zh � 1 − α
1 − δρ

zh − zl

zh
.

To see that the RHS of the last equality equals to χ̄, note that Ezt � 1 implies β � α(1− zl)/(zh − 1),
so that ρ � 1 − α − β � 1 − α(zh − zl)/(zh − 1), i.e., α � (1 − ρ)(zh − 1)/(zh − zl). It follows that

1 − α
1 − δρ

zh − zl

zh
� 1 −

1 − ρ
1 − δρ

zh − 1
zh

� χ̄.

Next I show that (zhπm , zlπm) ∈ Vl . If ξl < χ ≤ χ̄, then κl > 1 > κh as χ < 1; and if χ ≤ ξl , then

the IIC in state l ceases to be binding and Vl � Vf . Thus in both cases I have (zhπm , zlπm) ∈ Vl ,

which is also the maximizing point.

Part (b) χ̄ < χ ≤ 1. As in part (a), if χ > ξl , then κl ≥ 1 ≥ κh as χ ≤ 1; and if χ ≤ ξl , then

Vl � Vf . Therefore the only binding constraint is the IIC in state h. It follows that the program is

solved at v∗
l � zlπm and v∗

h � zlπmζl/(χ − ζh). Lastly, all comparative statics regarding r∗s and q∗s

follows directly from the results in Proposition 1. Q.E.D.
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Online Appendix (for online publication)

B Non-emptiness of the Parameter Space

In this subsection, I provide a simple sufficient condition for the existence of a screening cost

function C(·) such that both Assumption 2 and 3 are satisfied.

Consider a cost function C(·) which is twice continuously differentiable with C
( 1

2
)
� C′ ( 1

2
)
� 0

and C′(·) ≥ 0, C′′(·) > 0 over Q. Suppose that C0 ≤ C′′(·) ≤ C1 over Q. I shall find a sufficient

condition for the existence of C0 ≤ C1 such that whenever C′′(·) satisfies the lower and the upper

bound C0 , C1, it satisfies Assumption 2 and 3. In the process, I always assume that Assumption 1

holds.

First, simple calculus shows that

1
2C0 ≤ C′(1) �

∫ 1

1
2

C′′(x)dx ≤ 1
2C1 ,

1
8C0 ≤ C(1) �

∫ 1

1
2

∫ y

1
2

C′′(x)dxdy ≤ 1
8C1.

Thus, two sufficient conditions for Assumption 2 to hold are: (i) C1 ≤ 8 min{µ̄ηg(x),−(1− µ̄)ηb(x)},
and (ii) C0 ≥ 2[µ̄ηg(x) − (1 − µ̄)ηb(x)]. Since ηg(x) > 0 > ηb(x) by Assumption 1, it follows that

µ̄ηg(x)−(1− µ̄)ηb(x) > [µ̄−(1− µ̄)θb/θg]ηg(x). Consequently, Assumption 3 is satisfied whenever

(ii) holds.

As a result, a sufficient condition for the required C0 , C1 to exist is

µ̄ηg(x) − (1 − µ̄)ηb(x) ≤ 4 min{µ̄ηg(x),−(1 − µ̄)ηb(x)},

or equivalently 
µ̄ηg(x) − (1 − µ̄)ηb(x) ≤ 4µ̄ηg(x)

µ̄ηg(x) − (1 − µ̄)ηb(x) ≤ 4(1 − µ̄)ηg(x).

This condition can be written more succinctly as

−3
µ̄

1 − µ̄ η
g(x) ≤ ηb(x) ≤ −1

3
µ̄

1 − µ̄ η
g(x),

with the interpretation that the net loss from a bad project should be within a comparable range

of the net gain from a good project. I thereby conclude that whenever this condition is satisfied,

the parameter space satisfying all assumptions is non-empty.
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C Equilibrium Characterization under Risk Distribution Shock

For the case of the collateral value shock, Lemma 8 guarantees a relatively simple characterization

of equilibrium screening intensity q∗s ∀s � h , l. As made evident in the associated proof of that

result, such a simple characterization is possible because there exists a simple relationship between

the iso-profit curve and the level curve of the marginal benefit of screening. In contrast, I show

here that such a simple relationship no longer exists for the risk distribution shock, unless the

additional condition ηg(x) + ηb(x) ≤ 0 is imposed.

Let A� {(r, µ̄)|r0(µ̄) ≤ r ≤ x , µ̄ ∈ [µ̄l , µ̄h]} denote the region over which π(r; µ̄) is defined. Fix

a point (r, µ̄) ∈ Aand consider the iso-profit curve through (r, µ̄) within in A. Some algebra shows

that the derivative of the iso-profit curve at (r, µ̄) equals to

κπ � −
∂µ̄π(r; µ̄)
∂rπ(r; µ̄) � − qeηg − (1 − qe)ηb

µ̄qeθg + (1 − µ̄)(1 − qe)θb
< 0,

where qe � qe(r; µ̄) and ηθ � ηθ(r) ∀θ � g , b.

It can be showed that the derivative of the level curve of ∆(·) at (r, µ̄) equals to

κ∆ � −
∂µ̄∆(r; µ̄)
∂r∆(r; µ̄) � − ηg + ηb

µ̄θg − (1 − µ̄)θb
.

When ηg(x) + ηb(x) ≤ 0, ηg + ηb ≤ 0 for any r and κ∆ ≥ 0 > κπ. This implies that ∆(r′; µ̄′) ≤
∆(r; µ̄) for any point (r′, µ̄′) on the same iso-profit curve and to right of (r, µ̄), which leads to the

characterization of q∗s in Proposition 5. However, when ηg(x) + ηb(x) > 0, ηg + ηb > 0 for a range

of r. In this case, there is no longer a simple relationship between κ∆ and κπ, as showed by the

following equation

κπ − κ∆ �
(1 − µ̄)θbηg + µ̄θgηb

(µ̄qeθg + (1 − µ̄)(1 − qe)θb)(µ̄θg − (1 − µ̄)θb)
.

Assumption 1 requires that (1 − µ̄)θb < µ̄θg , yet ηg + ηb > 0 implies ηg > −ηb > 0, so that the

sign of κπ − κ∆ is undetermined. Accordingly, the change of ∆(r; µ̄) along an iso-profit curve is

undetermined as well. As a result, there is no simple characterization of q∗s in this case.

D Technical Lemmas

Lemma D.1. Suppose two random variables x and y satisfy following joint distribution

Prob. φγh (1 − φ)γh γl

x xh xh xl

y yh yl yl
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where γl , γh > 0, γh + γl � 1, φ ∈ [0, 1], xh > xl , and yh > yl . Then the correlation coefficient between

x and y is

ρ � ρ(φ) ≡
√

φγl

1 − φγh
,

and ρ(φ) is strictly increasing in φ ∈ [0, 1] with ρ(0) � 0 and ρ(1) � 1.

Proof. By definition, cov(x , y) � Ex y − ExEy, so that

cov(x , y) � φγh xh yh + (1 − φ)γh xh yl + γl xl yl − [φγh yh + (1 − φ)γh yl + γl yl]Ex

� [φyh + (1 − φ)yl]γh(xh − Ex) + γl yl(xl − Ex)

� φ(yh − yl)γh(xh − Ex) + γh yl(xh − Ex) + γl yl(xl − Ex)

� φ(yh − yl)γh(xh − Ex) + yl(γh xh + γl xl − Ex)

� φ(yh − yl)γh(xh − Ex).

By γh xh + γl xl � Ex, xl � (Ex − γh xh)/γl , and therefore var(x) � Ex2 − (Ex)2 becomes

var(x) � γh x2
h + γl x2

l − (Ex)2

� γh x2
h +

1
γl
[γ2

h x2
h − 2γh xhEx + (Ex)2] − (Ex)2

�
1
γl
[γhγl x2

h + γ
2
h x2

h − 2γh xhEx + (Ex)2 − γl(Ex)2]

�
γh
γl
[x2

h − 2xhEx + (Ex)2] � γh
γl
(xh − Ex)2.

Moreover, since Ey2 � φγh y2
h + (1 − φ)γh y2

l + γl y2
l � φγh(y2

h − y2
l ) + y2

l , var(y) � Ey2 − (Ey)2

becomes

var(y) � φγh(y2
h − y2

l ) + y2
l − φ

2γ2
h(yh − yl)2 − 2φγh yl(yh − yl) − y2

l

� φγh(yh − yl)[yh + yl − φγh(yh − yl) − 2yl]

� φγh(yh − yl)2(1 − φγh).

As ρ � cov(x , y)/
√

var(x)var(y), it follows that

ρ(φ) � φ√
(1 − φγh)/γl

�

√
φγl

1 − φγh
. Q.E.D.

Lemma D.2. Suppose {zt} is a two-state stationary Markov process with transition matrix
1 − α α

β 1 − β

 .
Then the first order autocorrelation coefficient ρ equals to 1 − (α + β)
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Proof. Let zh and zl denote the two states with stationary probability β
α+β and β

α+β , and z̄ denote

Ezt under the stationary distribution. (I do not assume z̄ � 1.) It follows that

cov(zt , zt−1) �
αz2

l + βz2
h − αβ(zh − zl)2 − (α + β)z̄2

α + β
,

var(zt) �
αz2

l + βz2
h − (α + β)z̄2

α + β
.

Since ρ � cov(zt , zt−1)/var(zt), there is

ρ � 1 −
αβ(zh − zl)2

αz2
h + βz2

l − (α + β)z̄2
.

Since αzl � (α + β)z̄ − βzh , the above expression becomes

ρ � 1 −
β(αzh − αzl)2

α2z2
l + αβz2

h − α(α + β)z̄2

� 1 −
β(α + β)2(zh − z̄)2

(α + β)2 z̄2 − 2(α + β)βz̄zh + β2z2
h + αβz2

h − α(α + β)z̄2

� 1 −
β(α + β)(zh − z̄)2

(α + β)z̄2 − 2βz̄zh + βz2
h − αz̄2

� 1 −
β(α + β)(zh − z̄)2
β(zh − z̄)2 � 1 − (α + β). Q.E.D.
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