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Introduction

Introduction

wy = W(Kt,Nt)
Ty = T’(Kt,Nt)

u' (cr) = BE; [ (crg1) (1 + (1 — Teq1) Te41) |

@ The solution consists of a time-invariant function a’(¢, a, F) which
gives him the optimal next-period capital stock

°
V(e,a,F) = max [u(c) + BE{V (¢',d',F') | ¢,F}]

subject to the budget constraint, the government policy {b, 7}, the
stochastic process of the employment status ¢, and the distribution
dynamics
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Transition Dynamics

Transition Dynamics: Example

1-n
c
V(e,a,F) = HCI’ZLIX llt_ ; +6E{V(e',a',F') | e,F}]
s.t.
4 1+A-7m)r)a+(1—-—71)w—c, ife=e
(1+(1—=7)r)a+b—c, ife=u
a4 2 min

7(¢19) = Prob{an = | =ep = ( hor Do)

The distribution F of (¢,a) is described by the following dynamics:

F' (e’,a’) = Z T (6/ | 6) F <e,a_1 (G,LII,F)>

ee{e,u}
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Transition Dynamics

Transition Dynamics: Example

Factor prices are equal to their respective marginal products:

N J e

w=(1-a«a) (I%)a

The aggregate consistency conditions hold:

K= Z /:naf(e,a)da

ec{eu}’?

WA

ec{e,u}
T = 7(wN + rK)

Bz/ bf (u,a)da
Amin
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Transition Dynamics

Transition Dynamics

e Two ways in order to approximate the dynamics of the
distribution

@ Krusell and Smith (1998): partial information

@ shooting method
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Transition Dynamics

Partial Information

@ We assume that agents only use partial information in order to
predict the law of motion for the state variable(s) or, equivalently,
are boundedly rational.

e Agents perceive the dynamics of the distribution F' = G(F) in a
simplified way. In particular, they characterize the distribution F
by I statistics m = (my, ..., myp).

m' = Hj(m)

V(e,a,m) = max [u(c) + BE{V (',a',m’) | e,m}]
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Transition Dynamics

Partial Information

T=7N'""K*=B=(1-N)b
b=((1-m)w=C(1-7)(1-a) (§>_

e We will choose a simple parameterized functional form for H;(m)
following KRUSELL and SMITH (1998)

InK' =~y +7 InK
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Transition Dynamics

Algorithm 1: Transition Dynamics with Bounded
Rationality

Step 1: Choose the initial distribution of assets Fy with mean Kj.
Step 2: Choose the order I of moments m.

Step 3: Guess a parameterized functional form for H; and choose
initial parameters of H;

Step 4: Solve the consumer’s optimization problem and compute
v(e,a,m)

Step 5: Simulate the dynamics of the distribution.

Step 6: Use the time path for the distribution to estimate the law of
motion for the moments m.

Step 7: Iterate until the parameters of H; converge.

Step 8: Test the goodness of fit for Hj. If the fit is satisfactory, stop,
otherwise increase I or choose a different functional form for H;.
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Transition Dynamics

Algorithm 1

@ In the first step, we assume that at time period t = 0, the
distribution is uniform over an interval approximately equal to

[—2,300].
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Figure 8.3: Dynamics of the Distribution Function over Time

@ We can use the time path of the capital stock to update the
coefficients vy and 7 (step 6 and 7 ).
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Transition Dynamics

Algorithm 1

o
N = n(a; K,N)f(e,a)da
Amin
In this case, individual labor supply depends on individual
wealth 2 and, consequently, aggregate labor supply N depends on
the distribution of wealth. In this case, we also need to estimate a
prediction function for aggregate labor

N’ :](NvK)

that, for example, might take the log-linear form In N’ = ¢+

Y1 InN + 1o In K. The household maximizes intertemporal utility
subject to the additional constraint and the value function
v(e,a,K, N) has the aggregate labor N as an additional argument.
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Transition Dynamics

Guessing a Finite Time Path for the Factor Prices

@ In this section, we introduce another method for the computation
of the transition path that only considers the individual variables
as arguments of the value function (or policy functions).
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Transition Dynamics

Guessing a Finite Time Path for the Factor Prices

Step 1: Choose the number of transition periods T.

Step 2: Compute the stationary distribution F of the new stationary
equilibrium. Initialize the first-period distribution function F'.

Step 3: Guess a time path for the factor prices r and w, unemployment
compensation b, and the income tax rate 7 that balances the budget.
The values of these variables in both periodst =1 and t = T are
implied by the initial and stationary distribution, respectively.

Step 4: Compute the optimal decision functions using the guess for
the interest rate 7, the wage income w, the tax rate 7 and the
unemployment compensation b. Iterate backwards in time,
t=T-1,...,1
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Transition Dynamics

Guessing a Finite Time Path for the Factor Prices

Step 5: Simulate the dynamics of the distribution with the help of the
optimal policy functions and the initial distribution for the transition
fromt=1tot=T.

Step 6: Compute the time path for the interest rate r, the wage w,
unemployment compensation b, and the income tax rate 7, and return
to step 3, if necessary.

Step 7: Compare the simulated distribution FT with the stationary
distribution function F. If the goodness of fit is poor, increase the
number of transition periods T.
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Transition Dynamics

Guessing a Finite Time Path for the Factor Prices

@ In step 4, we compute the optimal policy functions by backward
iteration. In period T, we know the new stationary distribution,
optimal policy functions, and the factor prices. For periods
t=T-1,...,1, we may compute the policy functions ¢; (¢, a;)
and a;11 (&, a¢) , for given policy functions ;11 (€41, 44+1) and
a4 (€441, ar+1) from the Euler equation with the help of projection
methods:

wlelest) — By ' (ct (er1,8141)) (14 (1= 741) 7e41)]
€ =e,u

where ¢; (e,a;) = (1 + 1 (1 — 7)) ar + (1 — 7¢) wy — agy1 (e,a;) and
ct (u,a¢) = (1 +r: (1 — 7)) as + by — apq (u,a¢) for the employed and

unemployed worker, respectively.
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Aggregate Uncertainty

Aggregate Uncertainty

e Aggregate risk is introduced by a stochastic technology level Z; in
period t. In particular, the productivity shock follows a Markov
process with transition matrix I'z (Z’ | Z), where Z' denotes
next-period technology level and 7z denotes the transition
probability from state Z to Z'.
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Aggregate Uncertainty

Example

V(e,a,Z,F) = mex | 7 ; +BE{V (¢,d',Z',F) | ¢,Z,F}

s.t.
, A+ AQ-7mra+(1-1w—c ife=e
14+(1=7)r)a+b—c ife=u
a 2 Amin

T (Z’,e/ | Z, 6) = Prob {Zt+1 =Z e1=€¢|Zi=Z,¢ = 6}
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Aggregate Uncertainty

Example

F'(¢,a;Z K) =) T (Z,¢|Ze) F(e,a;ZK)

where a = a1 (e,d’; Z, K) is the inverse of the optimal policy funct
a' = d'(e,a; Z, K) with respect to individual wealth a and

K = Z/a’f(e,a;Z,K)da

Again, f denotes the density function that is associated with F. Factors
prices are equal to their respective marginal products:

N -«
r = OéZt (E> )

w=(1-wa)Z <I§]>a
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Aggregate Uncertainty

Example

The aggregate consistency conditions hold:

K= Z/ﬂaf(e,a;Z,K)da

N = /f(e,a;Z,K)da
C=>_ / c(e,a; Z,K)f (e, a; Z,K)da

T = 7(wN + rK)
B= /bf(u,a;Z,K)da

Chen Xiong (Wuhan University) Computational Methods of Heterogeneous Ag 2020/11/09

20/38



Aggregate Uncertainty

Aggregate Uncertainty

e We will simplify the analysis further following KRUSELL and
SMITH (1998). In particular, we assume that the unemployment
rate takes only two values u, and u;, in good times and in bad
times, respectively, with ug < u;. In order to simplify the
dynamics of aggregate employment accordingly, the following
restrictions have to be imposed on the transition matrix I :

uZPZuZ’u i (1 _ UZ) Pzez'u = uy
Pzz Pzz
forZ,7' € {Zg, Zb}. Condition implies that unemployment is u,
and uy, if Z' = Z, and Z' = Z,, respectively.

Yoo + ipIn K if Z =27
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Aggregate Uncertainty

Algorithm 3

Step 1: Compute aggregate next-period employment N as a function
of current productivity Z : N = N(Z)

Step 2: Choose the order I of moments m.

Step 3: Guess a parameterized functional form for H; in (8.21) and
choose initial parameters of H;.

Step 4: Solve the consumer’s optimization problem and compute
V(e,a,Z,m)

Step 5: Simulate the dynamics of the distribution function.

Step 6: Use the time path for the distribution to estimate the law of
motion for the moments m.

Step 7: Iterate until the parameters of H; converge.

Step 8: Test the goodness of fit for H; using, for example, R%. If the fit is
satisfactory, stop, otherwise increase I or choose a different functional
form for Hj.
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Applications: Costs of Business Cycles with Liquidity
Constraints and Indivisibilities

@ The model in IMROHOROGU (1989)

o If e = e(e = u), the agent is employed (unemployed). If the agent
is employed he produces y(e) = 1 units of income. If he is
unemployed, he engages in home production and produces
y(u) = 6 units of consumption goods, where 0 < 6 < 1.
Furthermore, the agents cannot insure against unemployment.

@ agents cannot borrow, 2 > 0. They can insure against fluctuations
in their income by storing the asset. The budget constraint is
given by:

a1 = ay — ¢t + y (et)

@ In the second economy, the agents can borrow at rate r,. Agents
can save assets by either lending at rate ; = 0 or storing them.
There is an intermediation sector between borrowing and lending
households. The borrowing rate r;, exceeds the lending rate r, > 7;.
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Applications

Applications: Computation

@ In the present economy, the interest rate is given. We first
compute the decision functions by value function iteration. The
value function of the individual is a function of his assets 2 and
the state s :

V(a,s) = max [u(c) + BE{V (d',s') | s}]

= max u(c)+,627r(s’]s)V(a’,s’)

= 2 2 n(19)f@s)

a'=a'(a,s) s
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Applications: Computation
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Figure 8.9: Consumption c(a, s) in the Storage Economy
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Applications

Applications: Computation

Net savings a'-a

Figure 8.10: Net Savings a’ — @ in the Storage Economy
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Applicati

Applications: Computation
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Figure 8.12: Consumption c(a, s) in an Economy with Intermediation
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Applications

Applications: Computation
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Applications: welfare effects from business cycle
fluctuations

@ She computes average utility in the economy with and without
business cycle fluctuations

@ For the benchmark calibration, the elimination of business cycles
is equivalent to a utility gain corresponding to 0.3% of
consumption in the economy with a storage technology.

o the fluctuations only cause a utility loss equivalent to 0.05% of
consumption.

Chen Xiong (Wuhan University) Computational Methods of Heterogeneous Ag 2020/11/09 29/38



Applications

Business Cycle Dynamics of the Income Distribution

e CASTANEDA, DIAZ-GIMENEZ, and RIOS-RULL (1998b) explore
the business cycle dynamics of the income distribution both
empirically and in a theoretical computable general equilibrium
model. They find that, in the US, the income share earned by the
lowest quintile is more procyclical and more volatile than the
other income shares. In particular, the income shares earned by
the 60% — 95% group are even countercyclical, while the share
earned by the top 5% is still acyclical.
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The Model

@ There are many infinitely lived households of mass one who differ
with regard to the assets 4;, their employment status ¢, and their
efficiency typei € {1,...,5}.

@ In good times, agents work / (Zg) hours, and, in bad times, agents
work 1 (Zp) hours. Let (; denote the efficiency factor of a type i
agent. If employed, the agent receives the labor income h(Z)(w;
otherwise, he produces home production w.

e We will calibrate these values below so that N;(Z) is constant for
Z € {Z4,Z},} and does not depend on the history of the
productivity level Z, {Z,}7="

T=—00"

@ The aggregate labor input measured in efficiency units is given by

N(Z) = >, Gh(Z)Ni(Z).
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The Model

V(i,e,a;Z,F) = max [u(c) + BE {V (i', e’,a’;Z',F’) | i, e,Z,P}]
c,a
subject to the budget constraint:

! (1+r)a+wg“ih(Z)—c ife=e
(1+r)a~|—z_u—c ife=u

and subject to price, the stochastic process of the employment status e
and the aggregate technology Z, m; (Z', €' | Z, €) the agent’s efficiency
mobility as given by « (7' | i), and the distribution dynamics

F =G(F,2,2)
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Applications

Computation

@ Step 1: In the first step, we choose computational parameters and
compute the aggregate employment levels in good and bad times,

N (Zg) = > uiGih (Zg) N; (Zg)
N (Zy) = >_; piGih (Zp) N;i (Zy)

@ the value function of the agents, V (i, ¢,a, Z, K), and the
consumption function, c(i, €, a, Z, K)

@ Step 3: We impose again a very simple law of motion for the
capital stock.

InK = Yog + 11gInK %fzzzg
Yoo +y1p 0K if Z =27,
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Applications

Computation

@ Step 4 : In this step, we compute the optimal next-period asset
level @' (i, e,a, Z, K) by value function iteration.

@ Step 5: In order to simulate the dynamics of the wealth
distribution, we choose a sample of ni = 5,000 households. We
divide the households in 10 subsamples
(i,e),i=1,...,5,e € {e,u}

@ Step 6: estimate the coefficients 7y and v; of the equation (8.22)
with the help of an OLS-regression.
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Applications

Results
Table 8.2

Correlation

output and income
Income
Quintile US model
lowest quintile (0-20%) 0.53 0.79
second quintile (20-40%)  0.49 0.79
third quintile (40-60%) 0.31 -0.74
fourth quintile (60-80%) -0.29 -0.80
next 15% (80-95%) -0.64 -0.80
top 5% (95-100%) 0.00 -0.78
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Results
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Applications
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