Introduction to Bayesian Econometrics Gibbs Sampling and Metropolis-Hasting Sampling

Tao Zeng

Wuhan University

Dec 2016

Frequentist Probability and Subjective Probability

- In statistics, there is a distinction between two concepts of probability. frequentist probability and subjective probability.
- Frequentists restrict the assignment of probabilities to statements that describe the outcome of an experiment that can be repeated.

Example

A coin tossed three times will come up heads either two or three times. We can imagine repeating the experiment of tossing a coin three times and recording the number of times that two or three heads were reported.

$$Pr(A_1) = \lim_{n \to \infty} \frac{\text{number of times two or three heads coocurs}}{n}.$$

2 / 35

Frequentist Probability and Subjective Probability

Fact

Those who take the subjective view of probability believe that probability theory is applicable to any situation in which there is uncertainty.

- Outcomes of repeated experiments fall in that category, but so do statements about tomorrow's weather, which are not the outcomes of repeated experiments.
- Calling probabilities 'subjective' does not imply that they can be set arbitrarily, and probabilities set in accordance with the axioms are consistent.

Frequentist Probability and Subjective Probability

Example

(Subjective view of probability) Let Y a binary variable with Y=1 if a coin toss results in a head and 0 otherwise, and let

$$Pr(Y = 1) = \theta$$

 $Pr(Y = 0) = 1 - \theta$

which is assummed to be constant for each trial. In this model, θ is a parameter and the value of Y is the data (realisation y).

- From the frequentist point of view, probability theory can tell us something about the distribution of the data for a given θ .
- It is not given a probability distribution of θ , since it is not regarded as being the outcome of a repeated expriment.

Frequentist Probability and Subjective Probability

- In a frequentist approach, the parameters θ are considered as constant terms and the aim is to study the distribution of the data given θ , through the likelihood of the sample.
- The likelihood of the sample $(y_1, \dots y_n)$ is

$$L_n(\theta; y_1, \dots, y_n) = \prod_{i=1}^n \theta^{y_i} (1-\theta)^{1-y_i}.$$

- From the subjective point of view, however, θ is an **unknown** quantity.
- Since there is uncetainty over its value, it can be regarded as a random variable and assigned a prior distribution.
- Before seeing the data, it is assigned a prior distribution

$$\pi\left(\theta\right)$$
 with $0 \leq \theta \leq 1$.

Prior and posterior distribution

Prior distribution

Definition

Prior distribution In a Bayesian framework, the parameters θ associated to the distribution of the data, are considered as random variables. Their distribution is called the prior distribution and is denoted by π (θ).

• In most of cases, the prior distribution is parametrised, i.e. the pdf $\pi\left(\theta;\gamma\right)$ depends on a set of parameters γ where γ are the parameters of the prior distribution, called **hypeparameters**.

22/12

(Hyperparameters) If $\theta \in R$ and if the prior distribution is normal

$$\pi\left(heta;\gamma
ight)=rac{1}{\sigma\sqrt{2\pi}}\exp\left(-rac{\left(heta-\mu
ight)^{2}}{2\sigma^{2}}
ight)$$

with $\gamma = (\mu, \sigma^2)$ the vector of hyperparameters.

WHU (Institute) Bayesian Econometrics 22/12

(Beta prior distribution) If $\theta \in [0, 1]$, a common (parametrised) prior distribution is the Beta distribution denoted $B(\alpha, \beta)$.

$$\pi\left(\theta;\gamma\right) = \frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)} \theta^{\alpha-1} \left(1-\theta\right)^{\beta-1} \quad \alpha,\beta > 0 \,\, \theta \in [0,1]$$

with $\gamma = (\alpha, \beta)^T$ the vector of hyper parameters.

• Depending on the choice of α and β , this prior can capture beliefs that indicate θ is centered at 1/2, or it can shade θ toward zero or one.

WHU (Institute) Bayesian Econometrics 22/12

Prior and posterior distribution

Posterior distribution

Definition

(Posterior distribution) Bayesian inference centers on the posterior distribution $\pi(\theta|y)$, which is the conditional distribution of the random variable θ given the data (realisation of the sample) $y = (y_1, \dots, y_n)$.

$$\theta | (Y_1 = y_1, \dots Y_n = y_n) \sim \text{posterior distribution}$$

Theorem

(Bayes Theorem) For events A and B, the conditional probability of event A and given that B has occurred is

$$Pr(A|B) = \frac{Pr(B|A) \times Pr(A)}{Pr(B)}$$

Definition

For one observation y_i , the posterior distribution is the conditional distribution of θ given y_i , defined as to be

$$\pi\left(heta|y_{i}
ight)=rac{f_{Y_{i}| heta}\left(y_{i}| heta
ight) imes\pi\left(heta
ight)}{f_{Y_{i}}\left(y_{i}
ight)}$$

where

$$f_{Y_{i}}(y_{i}) = \int_{\Theta} f_{Y_{i}|\theta}(y_{i}|\theta) \times \pi(\theta) d\theta$$

and Θ the support of the distribution of θ , where the term $f_{Y_i|\theta}\left(y_i|\theta\right)$ corresponds to the likelihood of the observation y_i ,

$$f_{Y_i|\theta}(y_i|\theta) = L_i(\theta; y_i).$$

Definition

(**Posterior distribution, sample**) For sample (y_1, \ldots, y_n) , the posterior distribution is the conditional distribution of θ given y_i , defined as to be

$$\pi\left(\theta|y_{1},\ldots,y_{n}\right)=\frac{L_{n}\left(\theta;y_{1},\ldots,y_{n}\right)\times\pi\left(\theta\right)}{f_{Y_{1},\ldots,Y_{n}}\left(y_{1},\ldots,y_{n}\right)}$$

where $L_n(\theta; y_1, \dots, y_n)$ is the likelihood of the sample and

$$f_{Y_1,...Y_n}(y_1,...y_n) = \int_{\Theta} L_n(\theta;y_1,...,y_n) \times \pi(\theta) d\theta$$

and Θ the support of the distribution of θ .

• In this setting, the data $(y_1, \ldots y_n)$ are viewed as constants whose marginal distributions do not involve the parameters of interest θ , that is

$$f_{Y_1,\ldots Y_n}(y_1,\ldots y_n)=\text{constant}.$$

Definition

(Unormalised posterior distribution) The unormalised posterior distribution is the product of the likelihood of the sample and the prior distribution:

$$\pi(\theta|y_1,\ldots,y_n) \propto L_n(\theta;y_1,\ldots,y_n) \times \pi(\theta)$$

or with simplified form

$$\pi(\theta|y) \propto L_n(\theta;y) \times \pi(\theta)$$

where the symbol " α " means "is proportional to".

4□ > 4□ > 4□ > 4□ > 4□ > 3□

12 / 35

(Beta distribution) Consider an i.i.d. sample $(Y_1, ..., Y_n)$ of binary variables, such that $Y_i \sim Be(\theta)$ and:

$$f_{Y_i}(y_i;\theta) = \Pr(Y_i = y_i) = \theta^{y_i} (1-\theta)^{1-y_i}$$
,

We assume that the uninformative prior distribution for θ is an Beta $B(\alpha, \beta)$ with a pdf

$$\pi\left(\theta;\gamma\right) = \frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)} \theta^{\alpha-1} \left(1-\theta\right)^{\beta-1} \quad \alpha,\beta > 0 \quad \theta \in [0,1]$$

with $\gamma = (\alpha, \beta)^T$ the vector of hyperparameters.

- 4日 > 4個 > 4 種 > 4種 > 種 > 種 の Q (で

(Beta distribution, cont) The likelihood of the sample (y_1, \ldots, y_n) is

$$L_n(\theta; y_1, \ldots, y_n) = \theta^{\sum y_i} (1-\theta)^{\sum (1-y_i)}$$
,

hence the unormalised posterior distribution is

$$\begin{split} \pi\left(\theta|y_{1},\ldots,y_{n}\right) & \propto & L_{n}\left(\theta;y_{1},\ldots,y_{n}\right) \times \pi\left(\theta\right) \\ & = & \theta^{\sum y_{i}}\left(1-\theta\right)^{\sum\left(1-y_{i}\right)}\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}\theta^{\alpha-1}\left(1-\theta\right)^{\beta-1} \\ & \propto & \theta^{\sum y_{i}}\left(1-\theta\right)^{\sum\left(1-y_{i}\right)}\theta^{\alpha-1}\left(1-\theta\right)^{\beta-1} \\ & = & \theta^{(\alpha+\sum y_{i})-1}\left(1-\theta\right)^{(\beta+\sum\left(1-y_{i}\right))-1}. \end{split}$$

14 / 35

(Beta distribution, cont) Recall that the pdf of a Beta distribution is

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}\left(1-\theta\right)^{\beta-1}.$$

The posterior distribution is in the form of a Beta distribution with parameters

$$\alpha_1 = \alpha + \sum y_i \quad \beta_1 = \beta + n - \sum y_i$$
.

This is an example of a **conjugate prior**, where the posterior distribution is in the same family as the prior distribution.

(Beta distribution, cont) Note that

$$E(\theta|y_1,\ldots,y_n) = \frac{\alpha_1}{\alpha_1+\beta_1} = \frac{\alpha+\sum y_i}{\alpha+\beta+n}$$

which can be expressed as a function of the MLE estimator $\bar{y}_n = n^{-1} \sum_{i=1}^{N} y_i$ as follows

$$\underbrace{\frac{E(\theta|y_1,\ldots,y_n)}{\text{posterior mean}}}_{\text{posterior mean}} = \frac{\alpha_1}{\alpha_1 + \beta_1} = \frac{\alpha}{\alpha + \beta + n} + \frac{\sum y_i}{\alpha + \beta + n}$$
$$= \frac{\alpha + \beta}{\alpha + \beta + n} \underbrace{\frac{\alpha}{\alpha + \beta}}_{\text{prior mean}} + \frac{n}{\alpha + \beta + n} \underbrace{\frac{\bar{y}_n}{\alpha + \beta + n}}_{\text{MLE}}.$$

Prior and posterior distribution

Posterior distribution

• If $n \longrightarrow \infty$, then the weight on the prior mean approaches zero, and the weight on the MLE approaches one, implying

$$\lim_{n\longrightarrow\infty}E\left(\theta|y_1,\ldots,y_n\right)=\bar{y}_n.$$

• If the sample size is very small, $n \longrightarrow 0$, then we have

$$\lim_{n \to 0} E(\theta|y_1, \ldots, y_n) = \frac{\alpha}{\alpha + \beta}.$$

Bayesian updating

$$\pi\left(\theta|y_{1},y_{2}\right) \propto f\left(y_{1},y_{2}|\theta\right)\pi\left(\theta\right) = f\left(y_{2}|y_{1},\theta\right)\pi\left(\theta|y_{1}\right)$$

 As new information is required, the posterior distribution becomes the prior for the next experiment.

Prior and posterior distribution

Posterior distribution - some intuition of prior

- α can be interpreted as "the number of heads obtained in the expriment on which the prior is based".
- If, for example, you had seen this coin tossed a large number of times and heads appeared frequently, we can set a large number of α .
- $\alpha = \beta = 1$ yields uniform distribution which indicates that both head and tail can appear but otherwise have no strong opnion about the distribution of θ .

18 / 35

Classical Simulation — Probability Integral Transform Method

- In many cases, although we can always get the analytical form of the
 posterior density up to a constant, the characteristic of the density,
 such as mean, variance, median, are not easy to compute.
- Generate random sample from the posterior distribution to approximate these characteristics, such as the posterior mean

$$\widehat{E(\theta)} = \frac{1}{M} \sum_{m=1}^{M} \theta^{(m)}, \ m = 1, 2, 3, ... M$$

where $\theta^{(m)}$ is the random sample from the posterior density $\pi\left(\theta|\mathbf{y}\right)$.

- Monte Carlo draw the random samples identically and independently.
- Markov Chain Monte Carlo draw the random samples dependently.

Monte Carlo — Probability Integral Transform Method

- Suppose we wish to draw a sample of values from a random variable with d.f. $F(\cdot)$ which is nondecreasing.
- Consider the distribution Z, which is obtained by drawing U from U(0,1) and setting $Z=F^{-1}(U)$, then U=F(Z)

$$P(Z \le z) = P(F(Z) \le F(z)) = P(U \le F(z)) = F(z)$$
.

- Probability integral transform method:
 - ① Draw u from U(0,1).
 - 2 Return $y = F^{-1}(u)$ as a draw from f(y).
- Requires that $F\left(\cdot\right)$ be known (including constant) and $F^{-1}\left(\cdot\right)$ can be readily computed.

20 / 35

Monte Carlo — Accepted-Reject Algorithm

- $f\left(\cdot\right)$ is diffcult to simulate but it is possible to simulate values from $g\left(\cdot\right)$ and a number $c\geq1$ can be found such that $f\left(Y\right)\leq cg\left(Y\right)$ for all Y in the support of $f\left(\cdot\right)$.
- Accepted-Reject Algorithm
 - **1** Generate a value y from $g(\cdot)$.
 - 2 Draw a value u from U(0,1).
 - Return y as a draw from f (⋅) if u ≤ f (y) / cg (y). If not, reject it and return to step 1.
- The density $f(\cdot)$ is only need to be known up to a constant.

Monte Carlo — Accepted-Reject Algorithm

Proof.

Consider the distribution of the accepted values of y, $h[y|u \le f(y)/cg(y)]$, we have

$$h[y|u \le f(y)/cg(y)] = \frac{P[u \le f(y)/cg(y)]g(y)}{\int P[u \le f(y)/cg(y)]g(y)dy}$$
$$= \frac{f(y)/cg(y)g(y)}{\int f(y)/cg(y)g(y)dy} = f(y)$$

Note that

$$\int P\left[u \le f\left(y\right)/cg\left(y\right)\right]g\left(y\right)dy = 1/c$$

is the probality that a generated value of y is accepted.

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣りで

- MC methods are not easy to implemented in multivariate case.
- For AR method, it is difficult to find a suitable $g(\cdot)$.
- A sequence X_1, X_2, \cdots of random variables is called **Markov Chain** if the conditional distribution of X_{n+1} given X_1, \cdots, X_n depends on X_n only

$$P\left(X_{n+1} | X_n, \cdots, X_1
ight) = P\left(X_{n+1} | X_n
ight)$$
 ,

for instance, the AR(1) proess.

 Markov Chain Monte Carlo (MCMC) is a class of algorithms that produce a chain of simulated draws from a distribution where each draw is dependent on the previous draw.

Monte Carlo - Finite Sample Space

- A stochastic process X_t , takes the values in the finite set $S = \{1, 2, ..., s\}$.
- ullet Define p_{ij} as the probability that $X_{t+1}=j$ given that $X_t=i$

$$p_{ij} = P(X_{t+1} = j | X_t = i), i, j \in S$$

which is called transition probability, $\sum_{j=1}^{S} p_{ij} = 1$.

ullet The probability distribution at time t+1 only depends on the system at t is called the Markov property, and the resulting process is a Markov process.

MCMC - Finite Sample Space - Transition probability matrix

• Irreducible: starting from state *i*, the process can reach any other state with positive probability, a counter example

$$P = \left[\begin{array}{cc} P_1 & 0 \\ 0 & P_2 \end{array} \right]$$

where P_1 , P_2 are $m \times m$, strating from the first m states, it will never arrive the second m states.

• Aperiodic: starting from state *i*, the process can return *ith* state in one period, a counter example

$$P = \left[\begin{array}{cc} 0 & P_1 \\ P_2 & 0 \end{array} \right]$$

where strarting from the first m states, it takes 2 periods to return.

MCMC - Finite Sample Space - Invariant Distribution

• Invariant distribution: The probability distribution $\pi^* = (\pi_1^*, \pi_2^*, \dots \pi_s^*)'$ is an invariant distribution for P if $\pi' = \pi' P$.

Example

If we set
$$P=\left(\begin{array}{cc} 0.75 & 0.25 \\ 0.125 & 0.875 \end{array}\right)$$
, from $\pi^{*\prime}=\pi^{*\prime}P$, we have

$$(\pi_1^*,\pi_2^*)=(\pi_1^*,\pi_2^*)\left(egin{array}{cc} 0.75 & 0.25 \ 0.125 & 0.875 \end{array}
ight),$$

the solution is $\pi^{*'} = (1/3, 1/2)$.

WHU (Institute) Bayesian Econometrics 22/12 26 / 35

MCMC - Finite Sample Space - Invariant Distribution

Theorem

Suppose S is finite and $p_{ij} > 0$ for all i, j. Then there exists a unique probability distribution π_j^* , $j \in S$, such that $\sum_i \pi_i^* p_{ij} = \pi_j^*$ for all $j \in S$. Moreover,

$$\left|p_{ij}^{(n)}-\pi_j^*\right|\leq r^n,$$

where 0 < r < 1, for all i, j and $n \ge 1$.

- For large enough n, the initial state i plays almost no role.
- P^n converges quickly to a matrix whose rows are all $\pi^{*\prime}$.
- If a Markov Chain satisfy some conditions, the probability distribution of its *nth* iterate is very close to its invariant distribution for large *n*.

 If we can find a Markov process for which the invariant distribution is the target distribution, we can simulate draws from the process to generate values from the target distribution.

Theorem

Let P be irreducible and aperiodic over a finite state space. Then there is a unique probability distribution π^* such that $\sum_i \pi_i^* p_{ij} = \pi_j^*$ for all $j \in S$ and

$$\left|p_{ij}^{(n)}-\pi_j^*\right|\leq r^{n/\nu},$$

for all $i, j \in S$, where 0 < r < 1, for some positive integer v.

Definition

Transition Kernel: $K: S \times S \longrightarrow R_0^+$:

$$P(X_{t+1} \in A | X_t = x_t) = \int_A K(x_{t+1} | x_t) dx_{t+1}$$

for $A \in S$.

Definition

Invariant distribution: A distribution μ with density function f_{μ} is said to be the invariant distribution of a Markov chain X with transition kernel K if

$$f_{\mu}(y) = \int_{S} f_{\mu}(x) K(y|x) dx$$

for almost all $y \in S$.

(MCMC, Simple example) Suppose we want to sample from the following distribution

$$\pi\left(\theta\right) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{1-\phi^2}{\sigma^2}} \exp\left(-\frac{\left(1-\phi^2\right)\left(\theta-\mu/\left(1-\phi\right)\right)^2}{2\sigma^2}\right)$$

where $|\phi|<1$ and pretend that we do not know how to draw i.i.d. samples from this distribution which means that the target ditribution is $N\left(\mu/\left(1-\phi\right),\sigma^2/\left(1-\phi^2\right)\right)$.

WHU (Institute) Bayesian Econometrics 22/12 30 / 35

(MCMC, simple example, cont) Then suppose we use the following transition kernel to generate draws

$$q\left(heta_{t}| heta_{t-1}
ight)=rac{1}{\sqrt{2\pi\sigma}}\exp\left(-rac{\left(heta_{t}-\mu-\phi heta_{t-1}
ight)^{2}}{2\sigma^{2}}
ight)$$
 ,

that is θ_t belonging to an AR(1) process

$$\theta_t = \mu + \phi \theta_{t-1} + \varepsilon_t$$

where $\varepsilon_t \sim N\left(0, \sigma^2\right)$. We can show that $\pi\left(\theta\right)$ is the invariant distribution of $q\left(\theta_t \middle| \theta_{t-1}\right)$.

(MCMC, simple example, cont) If θ_{t-1} is sampled from the target ditribution $\theta_{t-1} \sim N\left(\mu/\left(1-\phi\right), \sigma^2/\left(1-\phi^2\right)\right)$, then we can easily get that

$$heta_t = \phi heta_{t-1} + arepsilon_t$$
 , $arepsilon_t \sim N\left(0, \sigma^2
ight)$,

hence

$$heta_t \sim N\left(\mu/\left(1-\phi
ight), \sigma^2/\left(1-\phi^2
ight)
ight)$$

since

$$\begin{array}{lcl} \textit{E}\left(\theta_{t}\right) & = & \phi\textit{E}\left(\theta_{t-1}\right) + \textit{E}\left(\varepsilon_{t}\right) = \mu/\left(1 - \phi\right) \\ \textit{Var}\left(\theta_{t}\right) & = & \phi^{2}\textit{Var}\left(\theta_{t-1}\right) + \textit{Var}\left(\varepsilon_{t}\right) = \sigma^{2}/\left(1 - \phi^{2}\right). \end{array}$$

Hence π is the invariant distribution of $q(\theta_t|\theta_{t-1})$.

Markov Chain Monte Carlo - Gibbs Sampling

- Gibbs sampling was proposed in the early 1990s (Geman and Geman, 1984; Gelfand and Smith, 1990) and fundamentally changed Bayesian computing.
- Gibbs sampling is attractive because it can sample from high-dimensional posteriors.
- The main idea is to break the problem of sampling from the high-dimensional joint distribution into a series of samples from low-dimensional conditional distributions.
- Because the low-dimensional updates are done in a loop, samples are not independent as in rejection sampling.
- The dependence of the samples turns out to follow a Markov distribution, leading to the name Markov chain Monte Carlo (MCMC).

Markov Chain Monte Carlo - Gibbs Sampling

- Gibbs Sampling is used to find the transition kernal which based on the condition that it is possible to sample from each conditional distribution.
- Gibbs algorithm with two blocks
 - Choose a starting value $x_2^{(0)}$.
 - 2 At the first iteration, draw

$$x_1^{(1)}$$
 from $f\left(x_1|x_2^{(0)}\right)$, $x_2^{(1)}$ from $f\left(x_2|x_1^{(1)}\right)$.

3 At the gth iteration, draw

$$\begin{aligned} &x_1^{(g)} \text{ from } f\left(x_1|x_2^{(g-1)}\right),\\ &x_2^{(g)} \text{ from } f\left(x_2|x_1^{(g-1)}\right). \end{aligned}$$

Markov Chain Monte Carlo - Gibbs Sampling

The Gibbs kernel is

$$p(x,y) = f(y_1|x_2) f(y_2|y_1)$$
,

from which we can compute

$$\int p(x,y) f(x) dx = \int f(y_1|x_2) f(y_2|y_1) f(x_1,x_2) dx_1 dx_2$$

$$= f(y_2|y_1) \int f(y_1|x_2) f(x_1,x_2) dx_1 dx_2$$

$$= f(y_2|y_1) f(y_1) = f(y_1,y_2).$$

hence $f(\cdot)$ is the invariant distribution for the Gibbs kernel.

35 / 35

WHU (Institute) Bayesian Econometrics