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Solving discrete time heterogeneous agent models
with aggregate risk and many idiosyncratic states

by perturbation
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Background

Models of heterogeneous agents have become widespread in macroe-
conomics, at least since Krusell and Smith (1997, 1998) developed
the first widely applicable algorithm to solve them in an environment
of aggregate risk.

One of the most popular and powerful of these methods was originally
developed by Reiter (2002, 2009).

This method extends perturbation methods to heterogeneous agent
environments, that is, it builds on the methods often used to solve
dynamic stochastic general equilibrium models with a representative
agent.
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Background

The extension of perturbation methods to heterogeneous agent mod-
els relies on writing the model in the form of a nonlinear difference
equation that is function valued instead of vector-valued (as in rep-
resentative agent models).

This equation is then (linearly) approximated around the stationary
equilibrium of the heterogeneous agent model without aggregate risk.

The two functionals that enter the difference equation are the distri-
bution of agents over idiosyncratic states (e.g., the wealth distribu-
tion) and the function (value or policy function) that describes the
optimal individual behavior.
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Background

The key practical issue is how to approximate the functionals involved
because they need to be replaced by finite dimensional objects for the
actual computation of the model’s dynamics.

In particular, when the individual planning problem is rich insofar as
it has many idiosyncratic states, this issue is severe.

The first idea to tackle this issue was to be as sparse as possible in the
parametric approximation of functions when solving for the stationary
equilibrium (see, e.g., Reiter (2009)), for example, through sparse grid
methods in the dynamic planning problem.

In other words, these methods rely on achieving dimensionality reduc-
tion ex ante, before solving for the stationary equilibrium, and hence
impose a numerical constraint on this solution.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Background

An alternative attack, also suggested by Reiter (2010a), is to use sin-
gular value decomposition for dimensionality reduction of the Jaco-
bian of the system after linearizing the difference equation but before
solving it.

However, the above methods will also lead to the calculation of a
very large Jacobian.

In fact, the solution of the stationary equilibrium provides us with
a priori knowledge for the distribution function and the value/policy
function of heterogeneous agents.

Therefore, we propose a dimensionality reduction step after the sta-
tionary equilibrium of the economy (i.e., without aggregate risk) has
been determined, but before perturbing the system.
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What this paper do

In detail, we suggest using sparse expansions of value and distribution
functions around their nonsparse stationary equilibrium counterparts.

First, we write the value function in the stationary equilibrium as a
sum of a full set of basis functions and determine the coefficients on
these.

Second, we split the high-dimensional distribution function into the
histograms of its marginals and their (joint) copula.

We show, both for an incomplete markets model with one asset and
for a model with two assets, that the assumption of a fixed copula
has little impact on the model dynamics but substantially speeds up
the computation.
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Prerequisites and notation

Let St ∈ Rn denotes the aggregate states in the economy, si,t ∈ Rm

for the idiosyncratic states of individual i at time t.

The heterogeneous agents distribution function denoted by µt.

In general, St and sit can be partitioned into an exogenous stochastic
and an endogenous deterministic component as follows:

St =

[
Xt
Dt

]
, sit =

[
xit
dit

]
where the dimension is respectively n = nx + nd and m = mx + md.
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Prerequisites and notation

Assuming that all stochastic variables follows the stationay Markov
chain, such that:

Xt+1 = HX (Xt) + εt+1, xit+1 = hx (xit) + ϵit+1

The innovations εt+1, ϵit+1 have variances ωΩ and σΣ for the aggre-
gate and idiosyncratic variables, respectively.

The idiosyncratic endogenous state variables dit are chosen by house-
holds in order to maximize their utility, such as:

ν (xit, dit,St, µt) = max
dit+1

u (xit, dit, dit+1;Pt)+βEν (xit+1, dit+1,St+1, µt+1)

where dit+1 subjects to the correspondence, i.e. dit+1 ∈ Γ(xit, dit,Pt)
and Pt = P(Xt,Dt, µt) represents the aggregate pricing kernel.
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Prerequisites and notation

From the individual’s point of view, aggregates and distributions only
matter through prices;

Thus we can simplify the notation for the above Bellman equation to
be:

νt(x, d) = max
d′∈Γt(x,d)

ut (x, d, d′) + βEνt+1 (x′, d′)

Based on the solution to the above operator (Bellman equation), we
can directly obtain the individual policy function hd(·) which will be
further introduced thereafter.
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Prerequisites and notation

To close the model, we need a description of market clearing.

We define an excess demand function Φt(hd
t , µt) that maps the id-

iosyncratic policies and the distribution, as well as prices and aggre-
gate states (captured by the time index), into a real vector.

In a bond economy with only IOUs, we would have:

Φ =

∫
hd

s (s)dµt(s)

and in an economy with government bonds this would be:

Φt =

∫
hd

s dµt(s)− Bt

where Bt is the amount of government bonds.
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2.2 Stationary equilibrium and approximate solution
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Stationary equilibrium and approximate solution

Inspired by Rerter (2009), we approximate the aggregate dynamics
around the stationary equilibrium. Therefore, firstly consider an econ-
omy without aggregate risk, that is, ω = 0. Then define a stationary
equilibrium as follows:

Definition 1. A stationary equilibrium is a value function v̄, a distri-
bution function µ̄, a policy function h̄d(s), and prices P̄ such that:
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Stationary equilibrium and approximate solution

1. The individual policy h̄d(s) is the maximizer of the Bellman equation
given P̄,

h̄d(x, d) = arg max
d′∈ΓP̄(x,d)

u (x, d, d′) + βEν̄ (x′, d′)

2. The value function solves the Bellman equation (3) given the individual
policy h̄d(s).

3. Markets clear, that is, Φ(h̄d, µ̄) = 0.

4. The distribution µ̄ is the stationary distribution of the Markov chain
induced by h̄(s, ϵ) :=

[
hx(s) + ϵ

h̄d(s)

]
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Stationary equilibrium and approximate solution

Some computational details:

the model is solved for a full tensor grid of points in Rm replacing
the functionals by some parametric approximation, e.g. replace the
value functions with splines with the nodes of the spline being equal
to the grid points.

The distribution is approximated by a step function (the density being
replaced by a point mass) on the grid points. (This paper used)

Further, the distribution of household can by approximated by a his-
togram dµ, replacing the density.
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Stationary equilibrium and approximate solution

Under the above method of approximation, the dynamics of distribu-
tion can be determined by point-mass dµ̄ and a transition matrix Πh̄
induced by individual policy function h̄, such that:

dµ̄ = dµ̄Πh̄

This is the discrete time analogue to the Kolmogorov forward/Fokker–
Planck equation in continuous time systems.

Similarly, if value function is replaced by a linear interpolant, we
obtain the solution to the Bellman equation is given by a finite vector
of values v̄, which needs to satisfy:

v̄ = uh̄d + βΠh̄v̄

where uh̄d is the utility under optimal policy.
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2.3 Sequential equilibrium with recursive individual
planning
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Sequential equilibrium with recursive individual planning

Definition 2. A sequential competitive equilibrium with recursive in-
dividual planning is a sequence of value functions vt, a sequence of
distribution functions µt, a sequence of policy functions hd

t (s), a se-
quence of aggregate states St, and a sequence of prices Pt such that
at each point in time t:

1. The individual policy is the maximizer of the Bellman equation
given the prices Pt:

hd
t (x, d) = arg max

d′∈Γ(x,d;Pt)
u (x, d, d′;Pt) + βEνt+1 (x′, d′)

2. The value function solves the Bellman equation given the individual
policy hd

t (s) and the expected continuation value vt+1.
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Sequential equilibrium with recursive individual planning

3. Markets clear, that is,

Φt
(
hd

t , µt,Pt,St
)
= 0

4. The distribution µt+1 is induced by,

ht(s, ϵ) :=
[

hx(s) + ϵt
hd

t (s)

]
and distribution µt;

5. The sequence of aggregate states is induced by,[
Xt+1
Dt+1

]
=

[
HX (Xt,Dt) + εt+1

HD (Xt,Dt, µt)

]
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Sequential equilibrium with recursive individual planning

As in the stationary equilibrium, we replace the distribution function
by a histogram and write the value function as a linear interpolant,
then we have:

dµt+1 = dµtΠht

Under the optimal policy induced uhd
t
, the Bellman equation deter-

mined by:
νt = uhd

t
+ βΠhtνt+1
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Sequential equilibrium with recursive individual planning

Combining these equilibrium conditions, we can summarize the se-
quential equilibrium conditions by the nonlinear difference equation
given by:

F (dµt,St, dµt+1,St+1, νt,Pt, νt+1,Pt+1, εt+1) =



dµt+1 − dµtΠht
Xt+1 − HX (Xt,Dt) + εt+1

Dt+1 − HD (Xt,Dt, dµt)

νt −
(

uhd
t
+ βΠhtνt+1

)
Φt

(
hd

t , dµt
)

εt+1


s.t.

hd
t (s) = arg max

d′∈Γ(x,d;Pt)
u
(
x, d, d′;Pt

)
+ βEνt+1

(
x′, d′)

A sequential equilibrium now fulfills:

EtF (dµt,St, dµt+1,St+1, νt,Pt, νt+1,Pt+1, εt+1) = 0
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Sequential equilibrium with recursive individual planning

In the above equilibirum, we can define the aggregate states and the
control variables as:

Ŝt := [dµt,Xt,Dt]
′

Ĉt := [νt,Pt]
′

If we are working with first-order conditions, value functions might
be replaced with marginal utilities.
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Sequential equilibrium with recursive individual planning

Based on the definition of two type of variables, i.e. predetermined
and non-predetermined variables, we can obtain following Jacobian
matrix: [

FŜ FŜ′ FĈ FĈ′

]
Let A :=

[
FŜ′ ;FĈ′

]
and B :=

[
FŜ;FĈ

]
.

According to the generalized Schur form (QZ decomposition), the
above matrix satisfies that:

QAZ = S , QBZ = T

where S and T are both upper triangular, generalized eigenvalue
λ(A,B) = {tii/sii : sii ̸= 0} and Q,Z are unitary matrices;
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Sequential equilibrium with recursive individual planning

Bayer and Luetticke (2020) solves linearized difference equations sys-
tem by relating its solution to generalized eigenvalue problem:[

FŜ′ FĈ′

]︸ ︷︷ ︸
A:=

ZΛ = −
[

FŜ FĈ
]︸ ︷︷ ︸

B:=

Z,

Actually, we can easily obtain solution by solving transformed dynamic
system from QZ decomposition:

Sx∗t+1 = Tx∗t + QCεt
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2.5 State-space reduction: Fixed copula,
compressed value function
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Some computational issues

In practice, however, solving the generalized eigenvalue problem (qz-
decomposition of A, B) becomes easily numerically infeasible when
the number of state variables (and controls) becomes very large;

Consider, for example, a household planning problem with two assets
and idiosyncratic income;

Even if we use only 9 points for the income grid and 50 points for
each of the two asset grids, then both dµ and v are vectors with a
length of 22,500 entries;

As the function system F(·) = 0 contains both the law of motion to
dµ and Bellman equation for each household, thus there would be
more than 45000 × 45000 entries.
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Dimensionality Reduction in Control Space

To aviod the computational infeasibility induced by large dimension of
state space, this paper propose to use the fixed copula and compressed
value function;

More specifically, we achieve dimensionality reduction of control space
( value v ) by following parametrization:

v̂t(s) = gv (s; θt, v̄)

where gv is the parametric function we selected and the dimension of
time-varying parameter vector θt is much smaller than the size of the
tensor grid for s;

How to select and construct gv?
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Dimensionality Reduction in Control Space

In order to reduce the dimensionality of coefficients that is used for
parametrization, one particularly useful way is to select Chebyshev
polynomial as functional basis.

Let v̄ be the array of the value function values at the nodes of the
full tensor grid in the stationary equilibrium.

Then let Θ̄ = dct(ν̄) be its cosine transform which maps array v̄ into
the space of coefficients of fitted Chebyshev polynomial Θ̄;

Moreover, the dimensionality of Θ̄ could still be large and we can
further achieve reduction by preserving parts of the above coefficients.
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Dimensionality Reduction in Control Space

Define I as the index set of some α% largest elements of Θ̄;
Then the usual sparse coefficient vector can be calculated by:

Θ̃ =

{
Θ̄(i) ∀i ∈ I
0 else

However, this paper do not use sparse coefficients in stationary equi-
librium, but use it when calculating the dynamics, that is:

Θ̂ (θt) =

{
Θ̄(i) + θt(i) ∀i ∈ I
Θ̄(i) else

Therefore, in the steady state i.e. θt = 0, the method used here can
fully recovers the results in stationary equilibrium value function.
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Dimensionality Reduction in distribution function

This paper split the determination of distribution dµ into a copula Ξt
and marginal distribution {µ1t(s), ..., µmt(s)}:

µt(s) = Ξt {µ1t(s), . . . , µmt(s)}

An shortage in this paper is that we treat state contingent coputa Ξt
as fixed one which obtained from stationary equilibrium Ξ̄.

Under the above method of dimensionality reduction, the dynamic
system F replaces value functions and distributions by the parameters
{θt, µ1t, ..., µmt}.

Nevertheless, the dimensionality reduction also lead to the number of
equations in dynamic system being larger than the number of vari-
ables.
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Dimensionality Reduction in distribution function

How to reduce the dimension of equations system?

For control variables ( the value vt of each households ), we can
replace error term of the Bellman equations such that

∆ν (vt, vt+1,Pt) := νt −
(

uhd
t
+ βΠhtνt+1

)
to be:

∆ν (θt, θt+1,Pt) := θt − dct
{

T
[
V̂ (θt+1) | Pt

]}
where V̂ (θt+1) is the parametric map θ → v, and T(·) denotes the
operator in Bellman equation.

We can constructs a similar representation for dµt and fixed copula
Ξ̄ to replace the law of motions in dynamic system.
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2.6 The algorithm in a nutshell
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The algorithm in a nutshell

For the algorithm, define grid sj = {dj
1, ..., d

j
nj} for each j = 1, ...,md

of the idiosyncratic endogenous state variables dj, with nj being the
number of grid points for variable j.

define grid s0 = {x1, ..., xn0} for the exogenous stochastic one, x,
which evolves with the transition matrix Πx;

Let S = ⊗j=0...mdsj be the tensor product of md + 1 grids, and let
IS be the corresponding tensor product of the indexes.

Define ν̂
[(

x, d1 . . . dmd
)
| ΠxV

]
as the linear interpolant defined by

the mesh S and node values ΠxV
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The algorithm in a nutshell

Prerequisites 1. 1. Define for a given price system P a mapping
T(V | P) : RJ → RJ such that

∀s =
(
x, d1 . . . dmd

)
∈ S

T(V | P)(s) := max(d1′ ...dmd′ )∈Γ(s,P) u
(

s, d1′
. . . dmd′

)
+βν̂

[(
x, d1′

. . . dmd′
)
| ΠxV

]
2. Define a mapping Π = Π(VP) : RJ → RJ×J such that

∀k =
(
k0 . . . kmd

)
, l =

(
l0 . . . lmd

)
∈ IS : Π (VP) (k, l) = Πx

(
k0, l0

) md∏
j=1

Πdj(k, l)
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The algorithm in a nutshell

where Πdj are the coefficients to represent the policy hd
P(x) =

(
hd

1(x) . . . hd
md(x)

)
as convex combinations of the nearest neighbors on the index mesh
IS , that is,

Πdj(k, l) =


0 if hd

j (k) /∈
[
dj

l−1, d
j
l+1

]
1 − hd

j (k)−dj
l

dj
l+1−dj

l
if dj

l+1 ≥ hd
j > dj

l
hd

j −dj
l−1

dj
l−dj

l−1
if dj

l ≥ hd
j ≥ dj

l−1

3. The discrete cosine transformation of array V.
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The algorithm in a nutshell

Algorithm 1. 1. Finding the stationary equilibrium

(a) For a given price system P, iterate T(n) = T
(

T
(
. . .T

(
V(0) | P

)
| P

)
| P

)
︸ ︷︷ ︸

n times
until convergency to obtain an equilibrium value function VP as the
limit n → ∞.

(b) Calculate the equilibrium distribution dµP by solving dµP =
dµPΠ(VP).

(c) Calculate excess demand Ψ as a function Ψ(hd
P, dµP).

(d) Search over prices, repeating (a) to (c) until Ψ(hd
P, dµP) = 0.
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The algorithm in a nutshell

2. Dimensionality reduction

(a) Define the joint distribution function µ̄(s) =
∑

x≤s dµ(x). Define
µ̄j ∈ [0, 1], j = 0, ...,md as the md + 1 vectors of the marginal
distribution w.r.t the nj points on the sj - grids.
Generate the fixed copula Ξ̄

(
µ0, . . . , µmd | µ̄

)
: [0, 1]md+1 → [0, 1] as

the interpolant of µ̄ on the tensor product ⊗md
j=0µ̄

j.

(b) Calculate the discrete cosine transformation of V̄ along all md+1
dimensions. This yields coefficients Θ. Find the minimal indxe set I
such that ∑

i∈I Θ(i)2∑
i Θ(i)2 > 1 − ϵ
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The algorithm in a nutshell

2. Dimensionality reduction

(c) Define a sparse vector that has #I nonzero entries, , and hence
is effectively much shorter than Θ ∈ RJ.

In the following, when we speak of perturbing θt, we mean perturbing
its nonzero entries, which is given by:

Θ̂ =

{
Θ̄(i) + θ(i) if i ∈ I
Θ̄(i) if i /∈ I
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The algorithm in a nutshell

2. Linearization

(a) Define the following objects:
We apply the discrete cosine transformation to the value func-
tions and evaluate on all points in S:

∆ν (θt, θt+1,Pt) := θt − dct
{

T
[
V̂ (θt+1) | Pt

]}
∈ RJ

for all variables j = 0, ...,md the difference between the marginal
distribution for time t + 1 obtained from iterating forward once
the distribution implied by (µj

t)j=0,...,md and the fixed copula Ξ̄,

∆∗
µ

[{
µj

t

}
j=0...md

,
{
µj

t+1

}
j=0...md

,Pt, θt+1

]
∈ R

∑
(md+1) nj

the excess demand function
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The algorithm in a nutshell

2. Linearization

(b) Use these differences equations to define a function:

F
({

µj
t

}
j=0...md

,St,St+1,
{
µj

t+1

}
j=0...md

, θt,Pt, θt+1,Pt+1 | Ξ̄,V, I
)

that describes the economy as a system of nonlinear difference equa-
tions

F =


∆∗

ν (θt, θt+1,Pt)

∆∗
µ

[{
µj

t

}
j=0...md

,
{
µj

t+1

}
j=0...md

,Pt, θt+1

]
St+1 − H (St)

Φ

({
µj

t

}
j=0...md

, θt+1,Pt,St,St+1

)
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The algorithm in a nutshell

2. Linearization

(c) Calculate the Jacobian of F. Define A, B as defined in the text
before and as in Schmitt-Grohé and Uribe (2004).

(d) Calculate the qz decomposition and solve for the linearized dy-
namics using the algorithm provided by Schmitt-Grohé and Uribe
(2004).
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Examples

3. Examples
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Examples

In the following, we discuss two examples to illustrate our mod-
ification of Reiter’s method to solve general equilibrium models
with heterogeneous agents and aggregate risk.

Both examples share the same model of consumption-savings
choice in which households face uninsurable income risk and
use assets to self-insure.

We then specify two variants of the model:
The first one without nominal frictions and only one asset, that
is, the setup of Krusell and Smith (1998);
second, a setup with two assets of different liquidity and a nom-
inal rigidity.
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Numerical Performance

4. Numerical Performance
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Comparision to Krusell and Smith(1998)

Figure 1 shows simulations of the K-S model for three different solution methods:
(1) perturbation with state-space reduction via the fixed copula assumption and
policy function compression; (2) perturbation with a full policy function and
histogram; (3) the original Krusell and Smith algorithm.
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Comparision to Krusell and Smith(1998)

Table 1 confirms this. The mean absolute error between the time series from the
two linearization methods and the K-S algorithm is 0.03%. What is more, the
linearization methods with and without state and control space reduction yield
basically the same simulation for the aggregate stock of capital with a maximum
absolute error of 0.001%.
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Comparision to Krusell and Smith(1998)

To further evaluate the accuracy of our solution method,we use the error metrics
suggested by Den Haan (2010a), comparing the simulation from the linearized
solution of the model to one in which we solve for the equilibrium interest rate
every period and track the full histogram over time.
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Details on using the DCT for dimensionality reduction

First, we compare the policy function in the stationary equilibrium with the policy
function that would have been obtained by solving the stationary equilibrium with
the sparse Chebyshev polynomial.
The approximation with 10 coefficients is fairly rough and unsatisfactory. It shows
excessive fluctuation and oscillation. With 50 out of 200 coefficients, the approx-
imation becomes much better.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details on using the DCT for dimensionality reduction

However, low number of coefficients, however, has hardly any impact on the
response of individual policies to a TFP shock.
Figure 3 shows how consumption policies change for different levels of sparseness
of θ.
The reason for this is that the shock mostly produces a level shift for consumption
together with a small change in the steepness of the consumption policy in wealth
and income. Changes in the large coefficients of the discrete cosine transform of
the consumption policy can capture these shifts well.
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Details on using the DCT for dimensionality reduction

Not very surprisingly, with these small differences in individual policies, the ag-
gregate responses look also indistinguishable; see Figure 4.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details on using the DCT for dimensionality reduction

we also investigate the numerical error induced by DCT-selection. Table 4 show
the result of comparision and we can find that, despite the complete polynomial
choice has somewhat stronger theoretical underpinning, it still performs substa-
nially worse.
The reason for the superior performance of the adaptive DCT-based method is
that across different income states, the policy functions are relatively similar in
the stationary equilibrium; the DCT method detects this, and this remains true
even when prices change after a shock.
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Details on using the copula for dimensionality reduction

To understand how restrictive the assumption of a fixed copula is, we compare
the model-implied distributions over time for the solution that does no reduction
(Reiter–Full) and our method, which fixes the copula.

We simulate and compute the metric of Jensen–Shannon distance(JSD) for dis-
tribution functions. The JSD is defined as follows,

JSD (f1, f2) =

√√√√1
2
∑
x∈X

f1(x) log
[

2f1(x)
f1(x) + f2(x)

]
+ f2(x)

[
log

2f2(x)
f1(x) + f2(x)

]

In particular, we consider two different cases of comparison.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details on using the DCT for dimensionality reduction

For the first case, we simulate the model using TFP shock the driving force.
Indeed, we find that the approximation error measured in terms of the Jensen–
Shannon distance (left column) between the joint distribution (of assets and
income) in the Reiter solution with and without the fixed copula assumption is
an order of magnitude smaller than the distance between either solution and the
stationary equilibrium distribution. The distance between the distributions is, at
0.0005, negligibly small.
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Details on using the DCT for dimensionality reduction

For the second case, , we simulate the model with shocks to idiosyncratic income
uncertainty as a driver of the cycle.
Now, the distance of the simulated distributions to the steady-state one is much
larger and the difference between the distribution from the full Reiter solution and
the one with a fixed copula attains a significant order of magnitude. We also find
some difference in the fluctuations of the capital stock that the model implies—
a model where the fluctuations in capital are small, as there is little aggregate
feedback.
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Extension : Two-asset model

The true advantage of the state and control space reduction through
separating marginals and copula and compressing the latter alongside
the value functions lies in tackling the curse of dimensionality.

Making it possible to solve models with high dimensional heterogene-
ity.

In the following, we provide accuracy statistics and computational
time for our model with a portfolio choice between liquid and illiq-
uid assets. This model features heterogeneity with respect to three
dimensions:

(a) liquid asset holdings,
(b) illiquid asset holdings,
(c) idiosyncratic productivity.
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Extension : Two-asset model

We solve the household problem on 100 grid points for both asset choices and 12
grid points for productivity. With 120,000 states and 240,000 controls (for the
two value functions), it is infeasible to solve for the aggregate dynamics of the
model on the full histogram.
The fixed copula approximation reduces the number of states to 236.
Maintaining only the coefficients of the discrete cosine transform of the value
functions with the cumulative highest 99.9999% energy reduces the number of
controls to 1427.
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Extension : Two-asset model

Table 6 shows the error metric suggested by Den Haan (2010a) for the capital
stock implied by the two-asset model in response to TFP shocks.
The maximum absolute error is 0.12% and the mean absolute error is 0.05%,
which are comparable to the errors in the case of single-asset model.
To assess how sensitive this result is, we also consider a specification that perturbs
the copula, too, and a specification that retains more coefficients of the DCT.
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Extension : Two-asset model

Table 7 shows that for this business cycle calibration with TFP, mon-
etary, and uncertainty shocks also the business cycle statistics do vary
relatively little, when we change the numerical specification.
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Extension : Two-asset model

In addition to the business cycle statistics, we also look at how the model performs
in terms of asset prices; see Table 8.
We report the average and maximum absolute deviation from asset market clear-
ing that the linearized solution produces, that is, we evaluate the difference in
asset supply and demand for both B and K given prices and the wealth distribution
that we get from the simulation of the linearized solution.
Since the model produces a steady state return difference, an illiquidity premium
for capital, the model gets a long way in terms of being close to the observed
Sharpe-ratios of Jordà et.al (2019) that range between 0.6 for housing and 0.25
for equities.
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Extension : Two-asset model

Figure 7 shows the effect of higher uncertainty about idiosyncratic productivity
in the Krusell and Smith model and the two-asset HANK model.
Consumption falls in both models as households increase their precautionary sav-
ings in response to higher uncertainty.
In the Krusell and Smith model, higher savings translate one-for-one into capital,
which leads to an economic expansion.
In the two-asset model, by contrast, households prefer to hold more liquid port-
folios. They sell illiquid capital to save more in liquid assets. Higher uncertainty
therefore causes a simultaneous fall in consumption, investment, and output.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

In this paper, we propose an extension of Reiter’s method to solve
heterogeneous agent models with aggregate risk by perturbation.

The state-space reduction is achieved by “lossy compression” of the
value functions, which are control variables of the system, and by
approximating the dynamics of the multidimensional distribution of
individual characteristics by a distribution with an (almost) fixed cop-
ula and varying marginals.

Both steps effectively reduce the problem that high-dimensional id-
iosyncratic state spaces pose and allow us to efficiently and precisely
solve for the equilibrium dynamics of heterogeneous agent economies
as we have shown in two examples.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thanks !


