高级微观经济学

第 1 讲: 微观经济学经典理论

授课人: 刘岩

武汉大学经管学院金融系

2017年9月26日

本讲内容

1 经典消费者理论

2 经典企业理论

本节内容

1 经典消费者理论

2 经典企业理论

③ 经典一般均衡理论

消费者偏好

- ▶ 商品空间 $X \subset \mathbb{R}_+^K$: 通常直接取做 \mathbb{R}_+^K 。
- ▶ 偏好 \(\alpha: X \) 上的一个二元关系,满足
 - 1. 完全性——对任意的 $x,y \in X$, $x \gtrsim y$ 或者 $y \gtrsim x$;
 - 2. 反身性——对任意的 $x \in X, x \gtrsim x$;
 - 3. 传递性——对任意的 $x,y,z \in X$, 若 $x \succsim y$, $y \succsim z$, 则 $x \succsim z$ 。
- ▶ 进一步地,可定义
 - 1. $x \preceq y$, 若 $y \succsim x$;
 - 2. x = y, 若 $x \gtrsim y$ 且 $y \gtrsim x$;
 - 3. $x \succ y$, 若 $x \succsim y$ 且 $y \not\succsim x$ 。

偏好的性质与表示

偏好的性质

- ▶ 连续性: 对任意的 $x \in X$, $\{y \in X : y \succsim x\}$ 和 $\{y \in X : y \precsim x\}$ 都是 X 中的闭集。
- ▶ 单调性: 若 $x \ge y$, 则 $x \succsim y$; 且若 $x \gg y$, 则 $x \succ y$ 。
- ▶ 凸性: X 是凸集; 若 $x,y \gtrsim z$, 则对任意的 $\alpha \in [0,1]$, 有 $\alpha x + (1-\alpha)y \gtrsim z$ 。

偏好的效用函数表示

▶ 若有 $U: X \to \mathbb{R}$ 满足 $x \succsim y$ 当且仅当 $U(x) \ge U(y)$,则称 U 为 \succsim 的一个表示。

效用函数的性质

- ▶ 给定偏好 \succsim , 若 U 是 \succsim 的表示,则对于任意的单调递增函数 $f: \mathbb{R} \to \mathbb{R}$, $f \circ U: x \mapsto f(U(x))$ 也是 \succsim 的表示。
- ▶ 若 \gtrsim 是凸的,则 \gtrsim 的任一表示 U 是拟凹的 (quasi-concave)。
- ▶ 若 ≿ 是单调的,则 ≿ 的任一表示 U 满足: $U(x) \ge U(y)$,若 $x \ge y$; 且 U(x) > U(y),若 $x \gg y$ 。

经典消费者理论

效用表示的存在性

定理 1 (Debreu, 1954)

 \dot{z} X 上的偏好 \succsim 是连续的,则存在连续函数 $U:X \to \mathbb{R}$ 使得 U 是 \succsim 的效用函数表示。

注 1: Rubinstein 第二章证明了一个较弱的结论,即连续偏好有效用函数表示(但该效用函数不一定连续); MWG, Kreps 和 JR 中均在额外假设偏好单调的情形下给出了证明。 注 2: 若偏好不连续,则可能不存在效用函数表示; 见

Rubinstein 第二章中 lexicographic 偏好的例子。

经典消费者理论 7/

消费者最优化问题

- ▶ 给定商品空间 $X = \mathbb{R}_+^K$ 及(相对)价格系统 $p \in \mathbb{R}_+^K \setminus \{0\}$ 。
- ▶ 给定消费者的偏好(假设其连续)及相应的效用函数表示 $U: X \to \mathbb{R}$; 给定该消费者的禀赋(endowment)向量 $e \in \mathbb{R}_+^K$ 。
- ▶ 消费者的预算约束(budget constraint)集合为:

$$B(p) = \{x \in X : p \cdot x \le p \cdot e\}.$$

- ▶ 消费者效用最优化问题为: $\max_{x \in B(p)} U(x)$ 。
- ▶ 该问题的解(当存在时), $D(p) = \operatorname{argmax}_{x \in B(p)} U(x)$,称为需求对应(demand correspondence)。

经典消费者理论

消费者最优化问题的几个性质

- ▶ 齐次性: 任取 $\alpha > 0$, 由 $B(p) = B(\alpha p)$ 知 $D(p) = D(\alpha p)$ 。
- ▶ 可取标准化价格空间: $\Delta = \{p \in \mathbb{R}_+^K : \sum_k p_k = 1\}$, 即 K-1 维单纯形 (simplex)。
- ▶ 把 B(p) 视作 $\Delta \Rightarrow X$ 的对应。若 $e \gg 0$,则 B 连续。
- ► 若 U 是拟凹函数,则 D(p) 是凸集。
- ▶ 注意, D(p) 和 Marshallian 需求对应不一样, 后者所对应的 预算集合为

$$B(p, w) = \{x \in X : p \cdot x \le w\},\$$

其中 w > 0 为收入。

经典消费者理论

本节内容

1 经典消费者理论

2 经典企业理论

3 经典一般均衡理论

经典企业理论

生产技术的描述

牛产集合

经典企业理论

- ▶ 企业的生产计划 (production plan) 由 \mathbb{R}^K 中的点 y 表示。
- $\triangleright u$ 的负坐标对应投入品,正坐标对应产出品。
- ▶ 企业的生产集合 (production set) 记为 Y。
- ▶ 这种描述方法比生产函数的方法更一般。

通常假设单个企业的 Y 满足:

- ▶ $Y \cap \mathbb{R}_{+}^{K} = \{0\}$ ——不能无中生有;
- ▶ Y 是闭凸集:
- ▶ $Y + \mathbb{R}^K \subset Y$ ——实质是可自由处置 (free disposal) 任何多 余产品。

企业目标和所有权结构

完全竞争下企业利润最大化

- ▶ 给定价格系统 $p \in \Delta$, 企业利润为 $p \cdot y$ 。
- ▶ 企业利润最大化: $\max_{y \in Y} p \cdot y$ 。

所有权结构与利润分配

- ▶ 假设经济中 H 个家庭共同拥有一个企业。
- ▶ 每个家庭享有 $\theta^h \in [0,1]$ 的权益, $\sum_h \theta^h = 1$.
- ightharpoonup 每个家庭的分配到的利润为 $heta^h p \cdot y$ 。

经典企业理论

本节内容

1 经典消费者理论

2 经典企业理论

经典一般均衡模型的基本市场结构

- ▶ 给定商品集合 K = {1,...,K}。
- ▶ 一个中央市场 (centralized market), 分为 K 个分市场。
- ▶ 市场参与者(家庭或企业)只在中央市场进行买卖交易。
- ▶ 所有 K 个分市场同时开启,每个市场 k 公布一个价格 p_k 。
- ▶ 参与者获知价格系统 $p = (p_1, ..., p_K)$, 并各自决定对每个 商品的需求与供给。
- ▶ 所有交易决策汇总到形成总需求/供给; 然后市场关闭。
- ▶ 每个参与者只关心价格;无视其他参与者。
- ▶ 竞争性体现在市场参与者均在给定价格下决策。

若干注记

- ▶ 经典一般均衡模型也称为 Arrow-Debreu-McKenzie 模型。
 - ▶ Kenneth Arrow and Gerard Debreu (1954) "Existence of an Equilibrium for a Competitive Economy" Econometrica.
 - ► Lionel McKenzie (1959) "On the Existence of General Equilibrium for a Competitive Market" Econometrica.
 - ► 但两篇文章同样在 1953 年的 Econometric Society 冬季会议 上宣讲了。
- ▶ ADM 模型竞争性均衡相关理论统称为经典一般均衡理论。
- ▶ Debreu (1959) **Theory of Value** 是经典参考文献。
- ▶ Debreu (1982) **Handbook of Mathematical Economics** 的相关章节包括经典一般均衡理论后续发展的很多结果。

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 釣९○

经典一般均衡理论 15/29

交换经济(exchange economy)

给定家庭集合 $H=\{1,\ldots,H\}$,及每个家庭对应的效用函数 $U^h:X=\mathbb{R}_+^K\to\mathbb{R}$ 与禀赋 $e^h\in X$ 。

定义 1 (交换经济的竞争均衡)

给定一个交换经济 $\mathscr{E} = (e^h, U^h)_{h \in H}$ 。一个价格系统 $p \in \Delta$ 与一个商品配置 $(x^h)_{h \in H}$ 的组合 $\langle p, (x^h)_{h \in H} \rangle$ 构成一个**竞争均**衡(competitive equilibrium),若下列条件得到满足:

- 1. 对每个家庭 $h \in H$,有 $x^h \in \operatorname{argmax}_{z \in B^h(p)} U^h(z)$,其中 $B^h(p) = \{z \in X : p \cdot z \leq p \cdot e^h\};$
- 2. 市场出清 $\sum_{h \in H} (x^h e^h) = 0$ 。

生产经济的描述(production economy)

企业

▶ 给定企业集合 $J = \{1, ..., J\}$,及每个企业的生产集合 $Y^j \subset \mathbb{R}^K$ 。

家庭

- ▶ 给定家庭集合 $H = \{1, ..., H\}$,及每个家庭对应的效用函数 $U^h: X = \mathbb{R}_+^K \to \mathbb{R}$,禀赋 $e^h \in X$,与所持有的 J 个企业的权益份额 $\theta^h = (\theta_1^h, ..., \theta_J^h)$ 。
- ▶ $(\theta^h)_{h \in H}$ 对所有 $j \in J$ 满足 $\sum_h \theta_j^h = 1$.

生产经济的均衡概念

定义 2 (生产经济的竞争均衡)

给定一个生产经济 $\mathscr{E} = ((U^h, e^h, \theta^h)_{h \in H}, (Y^j)_{j \in J})$ 。一个价格系统与一个商品配置(包括一组生产计划)的组合 $\langle p, (x^h)_{h \in H}, (y^j)_{j \in J} \rangle$ 构成一个竞争均衡,若下列条件得到满足:

- 1. 对每个企业 $j \in J$ 有 $y^j \in \operatorname{argmax}_{z \in Y^j} p \cdot z$;
- 2. 对每个家庭 $h \in H$ 有 $x^h \in \operatorname{argmax}_{z \in B^h(p,(y^j)_j)} U^h(z)$,其中 $B^h(p,(y^j)_j) = \left\{ z \in X : p \cdot z \leq p \cdot e^h + \sum_{j \in J} \theta^h_j p \cdot y^j \right\};$
- 3. 市场出清 $\sum_{h \in H} (x^h e^h) \sum_{j \in J} y^j = 0$ 。

均衡存在性: Arrow-Debreu 方法概要

- ► Arrow-Debreu (1954) 的经典证明是把均衡模型转化为一个 广义博弈 (generalized game)。
- ▶ 类似于 Nash (1950) 对 Nash 均衡存在性的证明,先证明该 广义博弈有一个 Nash 均衡 $\langle p^*, \text{配置}^* \rangle$ 。
- ▶ 再证明这个 Nash 均衡是一个竞争均衡; 特别地, 配置* 满足市场出清条件。
- ▶ McKenzie 的证明方法不同,是直接考虑加总净需求 $Z(p) = \sum_h (D^h(p) e^h)$ 。

广义博弈

概念

- ▶ 给定参与者集合 N = {1,...,N}。
- ▶ 给定每个参与者 $n \in N$ 的初始策略集 S^n ; S^n 是欧式空间的一个紧致凸子集。
- ▶ 定义 $S = S^1 \times \cdots \times S^N$, 并定义每个参与者 n 的得益函数 $\pi^n : S \to \mathbb{R}$ 。
- ▶ 定义参与者 n 的策略限制对应 $\varphi^n: S \Rightarrow S^n$ 。
- ▶ 称组合 $\widetilde{\Gamma} = (S^n, \pi^n, \varphi^n)_{n \in \mathbb{N}}$ 为一个广义博弈。
- 注: 若 $\varphi^n(s) \equiv S^n$, 即没有策略限制, 则 $\widetilde{\Gamma}$ 就是一个博弈。

20/29

广义博弈的 Nash 均衡

最优回应对应

- ▶ 给定一个策略组(strategy profile) $s = (s^1, ..., s^N)$ 。
- ▶ 参与者 n 的单方偏离 (unilateral deviation) 定义为 $s|_{n}t = (s^{1}, ..., t, ..., s^{N})$ 。
- ▶ 参与者 n 在 s 处的最优回应集(best reply set)定义为 $\beta^n(s) = \operatorname{argmax}_{t \in \varphi^n(s)} \pi^n(s|_{nt})$ 。
- ▶ $\tilde{\Gamma}$ 的最优回应对应(best reply correspondence)定义为 $\beta = \beta^1 \times \cdots \times \beta^N : S \rightrightarrows S$ 。

定义 3 (广义博弈的 Nash 均衡)

若策略组 s 满足 $s \in \beta(s)$,则称其为 $\widetilde{\Gamma}$ 的一个 Nash 均衡。

◆□ → ◆団 → ◆ 達 → ◆ 達 → りゅう

Nash 均衡的存在性

定理 2

给定 $\tilde{\Gamma}$ 。若对所有 $n \in N$, π^n 关于 s 连续,关于 s^n 拟凹,并且 φ^n 是连续、紧致且凸取值的对应,则 Nash 均衡存在。

证明.

由 π^n 关于 s^n 拟凹且 φ^n 凸取值,知 β^n 取值为凸集。给定 φ^n 连续且紧致,由 Berge 最大值定理知 β^n 上半连续且紧致。可验证 $\beta=\beta^1\times\cdots\times\beta^N:S\rightrightarrows S$ 也是上半连续、紧致且凸的,故由 Kakutani 不动点定理知存在 $s\in S$ 满足 $s\in\beta(s)$ 。

交换经济中竞争均衡的存在性

定理3

给定交换经济 $\mathscr{E} = (U^h, e^h)_{h \in H}$ 。若下列条件得到满足:

- 1. 对任意 $h \in H$, $e^h \gg 0$;
- 2. 对任意 $h \in H$, U^h 连续、拟凹且单调;
- 3. 对任意商品 $k \in K$,存在 $h \in H$,使得每当 $x \ge y$ 且 $x_k > y_k$ 时 $U^h(x) > U^h(y)$ 成立。

则存在一个竞争均衡。

均衡存在性的证明: 定义一个广义博弈

- ▶ 选取 $m > \max_k \sum_h e_k^h$, 定义 $M = \{x \in X : x_k \le m\}$ 。
- ▶ 给定 H 个家庭参与者,外加一个特别的价格参与者。
- ▶ 定义策略空间 $S = \Delta \times M \times \cdots \times M$ 。
- ▶ 定义家庭参与者 $h \in H$ 的得益函数 $\pi^h : S \to \mathbb{R}$ 为

$$\pi^h(p, x^1, \dots, x^h, \dots, x^H) = U^h(x^h).$$

▶ 定义价格参与者的得益函数 $\pi^0: S \to \mathbb{R}$ 为

$$\pi^{0}(p, x^{1}, \dots, x^{H}) = p \cdot \sum_{h} (x^{h} - e^{h}).$$

▶ 定义参与者的策略限制对应为

$$\varphi^h(p, x^1, \dots, x^H) = B^h(p) \cap M, \quad \varphi^0 \equiv \Delta.$$

均衡存在性的证明:广义博弈的 Nash 均衡

- ▶ 验证上述定义的广义博弈满足定理 2 的条件。
- ▶ 其中最重要的一步是证明 $\varphi^h(p,(x_h^h)) = B^h(p) \cap M$ 的连续性。这里要用到 $e^h \gg 0$ 这个假设。
- ▶ 定理 2 保证存在一个 Nash 均衡 $\langle p, (x^h)_h \rangle$ 。
- ▶ 余下步骤就是验证 $\langle p, (x^h)_h \rangle$ 是一个竞争均衡。

均衡存在性的证明:验证 Nash 均衡是竞争均衡

- 1. 验证 $\sum_h x^h \leq \sum_h e^h$.
- 2. 验证对于任意 $h \in H$, x^h 在 $B^h(p)$ 上最大化 U^h , 而不仅仅 在 $B^h(p) \cap M$ 上如此。
- 3. 验证 $p \gg 0$ 。
- 4. 验证 $p \cdot x^h = p \cdot e^h$ 对任意 $h \in H$ 成立。
- 5. 验证 $\sum_h x^h = \sum_h e^h$

评论: $e^h \gg 0$ 对所有 $h \in H$ 成立是一个非常强的要求。这个条件可以弱化; 详见 Dubey and Liu (2011), 3.2 节。

生产经济中一般均衡的存在性

定理 4

给定生产经济 $\mathscr{E} = ((U^h, e^h, \theta^h)_{h \in H}, (Y^j)_{j \in J})$ 。保持定理 3 的条件不变,并假设 $(Y^j)_{j \in J}$ 满足如下条件:

- 1. 对任意 $j \in J$, $Y^j \cap \mathbb{R}_+^K = \{0\}$;
- 2. 对任意 $j \in J$, Y^j 是闭凸集;
- 3. 对任意 $j \in J$, $Y^j + \mathbb{R}_-^K \subset Y$;
- 4. $\Rightarrow Y = Y^1 + \dots + Y^J, Y \cap \mathbb{R}_+^K = \{0\};$
- 5. $Y \cap (-Y) = \{0\}_{\circ}$

则存在一个竞争均衡。

Pareto 最优配置

给定交换经济 $\mathscr{E} = (U^h, e^h)_{h \in H}$

- ▶ 称配置 $(x^h)_h \in X^H$ 为可行的, 如果 $\sum_h x^h \leq \sum_h e^h$ 。
- ▶ 给定两个可行配置 $(x^h)_h$ 和 $(y^h)_h$ 。称 $(x^h)_h$ Pareto 优于 $(y^h)_h$,如果对所有的 $h \in H$ 有 $U^h(x^h) \ge U^h(y^h)$,且对至 少一个 h 有 $U^h(x^h) > U^h(y^h)$ 。
- ▶ 称 $(x^h)_h$ 为一个 Pareto 最优配置,如果没有其它可行配置 Pareto 优于 $(x^h)_h$ 。

对生产经济 $\mathscr{E} = ((U^h, e^h, \theta^h)_{h \in H}, (Y^j)_{j \in J})$ 也可以类似的定义 Pareto 最优配置。

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♥9

竞争均衡的福利性质

竞争均衡配置 (competitive equilibrium allocation)

- ▶ 对给定的交换经济 \mathscr{E} ,称一个配置 $(x^h)_h$ 为竞争均衡配置, 若存在 $p \in \Delta$ 使得 $\langle p, (x^h)_h \rangle$ 是 \mathscr{E} 的一个竞争均衡。
- ▶ 对生产经济也可类似定义。

定理 5 (福利经济学第一定理)

竞争均衡配置是 Pareto 最优配置。