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Chapter 1

Pure Exchange Economy

» Feb.1, 2010

Throughout these lecture notes, we maintain the following notations: Denote the non-negative
orthant of a Euclidean space of dimension n by R = {x € R"|x; > 0,i = 1,...,n};
R% '\ {0} represents the non-negative orthant without the origin; for any x € R”, x > 0
means x; > 0, Vi, x > O means xx > 0, Vi, and x > 0 means x > 0, and x; > 0O for some
i; and denotes the dot product of two vector x,y € R” by x - y = ) . x;y;. Moreover, for
all x € R”, we define the vector norm of x as ||x|| = maxi<;<,{|xi|}.

1.1 Pure Exchange Economy &

Let H = {1,..., H} be a set of households, and L = {1,..., L} be a set of commodities,
in which labor, but not food, might be the most important one. Naturally, we use Rf‘,_ to re-
present the commodity space, in which each point (vector) represents a consumption bundle.
For each household 2 € H, two most important characteristics are its preference and its

h . RL — R is always assu-

initial endowment. For the former one, a utility function u
med to represent the preference of /4, and up to now, no particular properties of preferences,
e.g., convexity, monotonicity, etc., are assumed; for the latter one, el = (e{’, o ,eZ) € Ri

denotes the initial endowment of 4.

To sum up, a pure exchange economy is defined as a collection of the set of households
with their preferences and endowments, and is denoted by & = (e”, u")pen.
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1.2 Competitive Equilibrium in &

Given a pure exchange economy & = (eh, uh) ner, we could define the concept of competi-
tive equilibria.

Before proceeding to the formal definition of competitive equilibria, it is worth to point
out several basic assumptions underlying the concept of competitive equilibria. First, we
presume that there exists a specific market for each commodity £ € L, in which a unique
price p¢ is to be announced. Second, all the commodities are private goods and perfectly
divisible, the latter of which also gives the rationale of assuming Ri to be the commodity
space. Third, there is no tax or transaction cost in this model. Forth, households in this model
only take into account of the prices in the markets, that is, they don’t care about how many
people are there in the markets, or what is the total amount of a certain commodity available
in the economy, and in fact they don’t even need to know all this sort of information. By using
the word “price” here, there is no necessity of including money into this model economy, and
actually, there is no money in such an economy, nor anywhere else in these lecture notes.
We will talk about price recurrently, but in no way has it to do with money. After all, what
we will concentrate on are merely exchange rates, or to say, relative prices.

Given a price system, specified by a price vector p = (p1,..., pr) € R% \ {0}, we can
always normalize p to have ) ,.; p¢ = 1. Doubling all prices in this model doesn’t matter
at all, since it makes no change of the budget set. Of course, in real life, this can not be true,
since it’s always the case that all prices go up while the income remains the same.

Despite the mild normative tone, as if there were a superb social planner, we shall still
use the term allocation, whenever we are referring to a set of consumption bundles (x");ec g
for all households in the economy which satisfies the additional condition that the aggre-
gate bundle is feasible given the aggregate endowment, i.e., Y .y xh < Y el e’. Just to
mention it a little bit, an allocation (xh) nen could also be viewed as a vector in the product
commodity space Rl = RE x - x RE.

We make two more assumptions on initial endowments and preferences in this economy.

"More precisely, by assuming all commodities are goods — this is indeed what we are going to assume
throughout these lecture notes — it suffices to restrict the analysis to the case of p € Ri \ {0}, ignoring the
trivial case of p = 0. However, if some commodities are bads, then perhaps we should extend the domain of
price vectors to RL \ {0}, at least in the case that we want to treat these bads in the same way as goods.
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A.1. Each household has some positive amount of endowment for some commodities, or in
symbol, e’ Ri \ {0}; moreover, ) .y e’ > 0, that is every named commodity
does exist in the economy.

A2 Forallh € H and x, y € RE, if x > y then u”(x) > u”(y), and in addition,
if x > y, then u”(x) > u”(y). This is also termed as weak monotonicity of utility
(preference).’

Now we are at the stage of stating the formal definition of competitive equilibria in &

Definition 1.1. A collection of a price system and an allocation of commodities {p, x', ..., x
is a competitive equilibrium (C.E.) in a pure exchange economy & = (e, u")yen if the fol-
lowing conditions are satisfied:

e Utility maximization. For each household Vh € H, x" maximizes its utility over the
budget set, i.e.,

x" e argmax uh(y)

y€B"(p)
where B"(p) = {y € RJLF : p-y < p-eh)is the budget set of h defined by the
equilibrium price system p.?

e Market clearing. The equilibrium allocation clears the market, i.e.,

Z(xh —eM =o0.

heH

Remark 1.1. In the definition of the budget set, each point y € B”(p) is an affordable (final)
consumption bundle, and the inequality constraint p - y < p - e” can be interpreted in two
ways: (i) a two-step procedure, that is first sell out all the endowment, and then buy what
is desired; and (ii) a supply-demand procedure, that is first transform the inequality into
D ver Pe(ye— e?) = p-(y —e”) <0, and whenever y; — eé‘ < 0, h supplies some ¢ to the
market, while whenever y, — eél > 0, h demands some £ from the market.

’The standard definition of weak monotonicity is just the second half of what stated here. By including the
first half into our definition of weak monotonicity, we are essentially assuming locally non-satiated preference
without explicitly mentioning this term. Obviously, the first half in the definition implies local non-satiation.

3For a function f : Z — R, where Z C R", define argmax,. f(z) as the set of all points in Z that
maximize f(-) over Z; if the maximum of f(-) over Z does not exist, then define argmax,., f(z) as empty
set.

)

>
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Remark 1.2. If we assume complete freedom for households on choosing the utility max-
imizing bundles by themselves, then the equilibrium might fail to exist because the self-
selected allocation might violate the market clearing condition, even if the same price system
does constitute a competitive equilibrium with some other allocation (which is compatible
with this price system). Conceptually, we economists choose the specific utility maximizing
bundles for the households, and that’s why we present the equilibrium allocation at the very
beginning in defining C.E.

1.3 The Core of &

For any subset S C H, where the number of the elements is also denoted by S, we call
(xh)s € ]Rf_s an S-allocation, if Zhe S xh < Zhe s e": and an H -allocation just indicates
an allocation in the economy.

Definition 1.2. An H -allocation (x")peq in & = (", u")pen is called a core allocation of
&, if there exists no S-allocation (y")nes where S is a subset of H, such that

u"(GM = u(x"), Vhes;

ul(y") > u(x"),  for at least one h € 8.

The set of all core allocations is simply defined as the core of &

When § = H, this definition coincides with Pareto optimality, thus each core allocation
is Pareto optimal. However, the converse is not true. A simplest example goes like follows.
Consider an allocation of assigning all the endowment to one household and leaving nothing
to everyone else. Obviously this allocation is Pareto optimal yet not a core allocation.

Definition 1.3. (x!,..., x) is a competitive allocation of &, if there exists a price system
p such that (p,x', ..., x") is a competitive equilibrium in &.

The desired welfare property of competitive equilibrium is justified by the following the-
orem, from which we could directly get the famous first theorem of welfare economics as a

corollary. Note assumption A.2 listed in the precede section is maintained.

Theorem 1.1. Every competitive allocation of & is a core allocation.
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Corollary 1.2. Every competitive allocation is Pareto optimal.

» Feb.3, 2010

Proof of Theorem 1.1. Let (p,x',..., xH) be a C.E. of &. Suppose in converse, the compe-
titive allocation is not a core allocation, then there exists an S-allocation (y”*),es such that
u(y") > u"(x") for any h € S with strict inequality for some #.

First, we claim that p - y" > p.e", Vh € S. If not, there exists an & € S such that
p-y" < p-e”. Then we can find € > 0 small enough such that y* « yé’ ==
(€,...,€)and p-y" < p.eh ie. y" € B"(p). Since y? > y" and by the assumption of
weak monotonicity, we have uh(yf) > u"(y"). By the definition of S-allocation, we have
ul(y") > u”(x"). Thus u(y") > u"(x"). But this contradicts the fact that x" maximizes
I’s utility over B"(p) since y” is also in the budget set.

Second, we claim that there exists an / such that p - y* > p - e". By definition of S-
allocation, there must be at least one & € S such that u”(y") > u”(x"). For this h, if
p-y" < p-e”, then y" € B*(p). But again, this contradicts the fact that x” maximizes
u”(-) over B*(p).

Combining the two claims, we must have ) , ¢ p - yh >y hes D ° e. However, since
(¥")hes is an S-allocation, we have Y, ¢ ¥ < 3", ¢ €”, and multiply each side by p, we
have ), .o p - yh < D hes P e’. This contradiction proves our initial assumption is not
true and thus complete the proof. 1

Remark 1.3. As shown in the proof, it suffices to assume that the preferences satisfy
if x > y then u”(x) > u"(y),
which is the first half of our definition of weak monotonicity.

Now, let us think about a five sentences proof for a slightly modified version of theorem
1.1, which is known as Debreu’s proof.* To this end, we first impose two more assumptions
about the preference, strong monotonicity, i.e., whenever x > y then u”(x) > u”(y), and
continuity. Notice that under these assumptions, if an S-allocation makes it invalid for a com-
petitive allocation to be in the core, then we can always slightly reallocate the S-allocation

4Somebody said Debreu demonstrated this result and gave an five sentences proof in his Nobel Prize speech.
However, there has no such an argument in neither Debreu’s speech nor his prize lecture.
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such that every household in S has a strictly higher utility than that in the competitive allo-
cation.’

With this fact, the Debreu’s proof can be showed as follows: First, notice whenever there
is a red S-allocation which makes the blue C.E. not in the core, we can simply assume
every household in § is strictly better off than in the blue C.E.; but if so, each household
would have a higher total value of consumption bundle in this S-allocation than that of its
endowment, which were to imply that the aggregate value of the S-allocation exceeds that
of the total endowments in S.

The term “core” originates from von Neumann and Morgenstern (1947), where they de-
fined a closely related concept “stable set”, something located at the center of the relevant
geometrical structure. However, the idea of core allocation dates back to Edgeworth.

1.4 Edgeworth Box

Consider the simplest pure exchange economy with two households and two commodities.
Let H = {1,2} and L = {1, 2}, together with the utility u'(x], x3), u?(x?, x3), as well as
initial endowments e! = (e}, el), €2 = (e?,€2). Let T = [0,e] + €?] x [0,e) + €2] be
the set of all feasible consumption bundles of each household in this economy. We can use a
rectangular to represent the set 7', as in the following figure. And we call this rectangular a
Edgeworth box.

0,
e;5 A. X2
77777 —— — —e
'E
1 ! ‘
e, |
T : 2
0, e; e;

SThere exists some & € S such that u” (y") > u’(x"), and use the same argument as in the proof of theorem
1.1, we have p-y”* > p-e”. Moreover, this implies that /2 could distribute some commodities in its consumption
bundle evenly across all other households in .S by a sufficiently small amount, and by the continuity of utility,
keep its utility in the S-allocation still higher than that in the competitive allocation. Now, every household
else in S will achieve a higher utility by the strong monotonicity of utility.
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In this box, E represents the initial endowments of the two households, and A represents
an allocation which exhausts the total endowments. It turns out that the Edgeworth box is
a of great use in illustrating the connection of three concepts, the Pareto optimal allocation,
the competitive allocation and the core allocation, in a rather intuitive way.

Let us focus on the simplest case, namely, the utility functions of the two households
are strictly quasi-concave, strongly monotone and continuously differentiable. Let Pj(x) =
{y e T|u"(y) > u”(x)} be the set of consumption bundles for each 1 € H with which h
is at least as happy as having x. Observe, for instance from the following box, that if the
intersection of P;(x) and P,(x) has a non-empty interior region, then the allocation x can
not be a Pareto optimal.®

X Pyi(x)

P (x)

0,

We conclude that Pareto optimality can be achieved only in the case that two indifference
curves intersect with each other at a single point, i.e., they are tangent with each other at
this point. From our assumptions about the utility functions, the set of allocations which are
Pareto optimal constitutes a continuous curve connecting the two origins. We call this curve
the contract curve of the economy. Also notice that at each Pareto optimal allocation x, there
exists a unique straight line that is tangent with P;(x) and P,(x) at x. We call this line the
separating line of the two households.

®Recall that an allocation x is a set of consumption bundles (x"),cz. As a slight abuse of notations, we
will simply write down Py (x) indicating the exact form Py (xp).
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0>

Py(x)

P (x)

0,

Given the initial endowments E = (e!, e?), we can find out the core allocations in this
economy. Note in this case, the possible S-allocations consist of only three sets, two hou-
seholds respectively and H as a whole. Therefore once an allocation satisfies both Pareto
optimality condition and rationality condition, i.e., each household with this allocation is no
worse than with its initial endowment, then this allocation must be a core allocation. It can
be easily seen that a fraction of the contract curve constitutes the set of core allocations in
this economy. For example, in the following box, the set of core allocations is the fraction of
the contract curve between a and b.

5 PuE)

Py(E)

O,

Next, consider the competitive allocations in this economy. In an Edgeworth box, a com-
petitive equilibrium (p, x) can be viewed geometrically as defining a separating line which
goes through the initial endowments £ and the allocation point x, while the latter one is
also the tangent point of both Py(x), & = 1,2, and the separating line. Moreover, the price
vector is the normal vector of the separating line. Following this geometrical interpretation,
it is obvious that the competitive allocation x is Pareto optimal (the separating line and the
contract curve intersect at x), thus x is also a core allocation, as shown in the following
Edgeworth box.
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0>

Py(x)

() o :

0,

The discussion above also provides some geometrical insight of the first theorem of wel-
fare economics. Moreover, by using the Edgeworth box, we can give a heuristic yet intuitive
proof the existence of C.E. in this 2 by 2 economy. Through the initial endowment point
E, we can draw two indifference curves for households 1 and 2, which intersect with the
contract curve at a and b respectively. Since the preferences are convex (utility functions
are quasi-concave), the tangent line to 1’s indifference curve at a is on the left side of E,
while for 2 is on the right side. By the assumption of continuous differentiability of uti-
lity functions, the separating lines at each point of the contract curve between a and b will
change continuously, hence one of them, say the separating line at x must go through E.
Therefore, the allocation x together with the normal vector of the separating line joining x
and £ consist of a competitive equilibrium.

0>

0,
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Chapter 2

Nash Equilibrium

» Feb.8, 2010

2.1 N.E.in A Game

Let N = {1,..., N} be a set of players, and for each n € N, define S” = strategy set of
playern. Put S = S! x---x SV and define 7" : § — R as payoff function for n. A game
isgivenby I' = (8", 7"),en .

Givens = (s!,...,sN) e Sandt € S", (s|.t) = (s',....s" L t,s"t, ... .sV) e S

denotes the unilateral deviation of player n from s” to ¢ at s.
Definition 2.1. Define " (s) = argmax,cgn 7" (s|5t) as the best reply set of n at s.

Definition 2.2. A strategy profile s = (s',...,sN) is called a Nash equilibrium (N.E.) of
' =(S",n")nen if s" € B"(s) Vn € N.

Definition 2.3. Let the best reply correspondence B : S = S of I be defined in the following

way, Vs € S
Bs)y= B'(s) x - x BN(s)
N N
S x ... x SN =g,

where = represents correspondence (point-to-set map).
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With this notation, the strategy profile s is a N.E. iff s € B(s), i.e., a fixed point of
the best reply correspondence. In order to prove the existence of N.E., we need following
mathematical preliminaries. And throughout the remaining of this chapter, we restrict to
Euclidean space.

We have mentioned “correspondence” several times, now let’s give a formal definition.

Definition 2.4. We call ¢ as a correspondence from X to Y, where X C R™ and Y C R”, if

Vx € X, ¢(x) is a non-empty subset of R", and this correspondence is denoted as ¢ : X =
Y.

Since each subset of Y can be regarded as a point in the power set of Y,! the correspon-
dence ¢ is nothing but a map from X to the power set of Y .2 Moreover, if V x € X, ¢(x) is
a singleton, then ¢ is an ordinary map (function) from X to Y.

As in the case of function, some kind of continuity concept for correspondences is always
desirable. It turns out that following definitions are most useful for economic applications.
Several concepts are involved in defining the continuity for correspondences.

Definition 2.5. Let ¢ : X =2 Y be a correspondence, the set G, = {(x,y) € X x Y|y €
@(x)} is called the graph of ¢.

Definition 2.6. We call a correspondence ¢ to be upper semi-continuous (u.s.c.) on X if G,

is a closed set in X X Y, which is equivalent to either one of the following conditions:

o Wesay ¢ to be u.s.c. atx € X, if (xn, yn) = (x,¥) € X XY and (x, yn) € Gy, then
(x,y) € Gy; and we say ¢ to be u.s.c. on X, if p isu.s.c. Vx € X.

o We say ¢ to be us.c. atx € X, if xo = X, yo» —> y € Y and y, € ¢(xp,), then
y € @(x); we say ¢ to be u.s.c. on X, if p isu.s.c. Vx € X.

We will use the term upper hemi-continuous (u.h.c) in the same meaning of u.s.c.

Definition 2.7. We call a correspondence ¢ to be lower semi-continuous (l.s.c.) at x € X if
for any sequence x,, — x and for any point y € @(x), there exists y, € ¢(x,) for each n s.t.
Yn = Vs ifeisls.c. Vx € X, thenwe say ¢ to be l.s.c. on X.

'The power set of a set A is the collection of all the subsets of A, which defines a new set as well.
Mathematically, a map always refers to a point-to-point relationship between two sets.
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We will also use the term lower hemi-continuous (1.h.c) in the same meaning of L.s.c.

Definition 2.8. We say ¢ to be continuous if it is both u.s.c. and L.s.c.

The graph below is an illustration for these concepts. ¢ is u.s.c. at x; but not L.s.c., and on
the contrary, L.s.c. at x, but not u.s.c. Intuitively, u.s.c. says that a correspondence can not
“shrink” while l.s.c. says that it can not “expand”.

Y ‘ G,
\
—
56 1 562 X

The following propositions demonstrate some basic properties and applications of the con-
cept of correspondences. In particular, theorem 2.1 characterizes the fundamental property of
constrained optimization in the language of correspondences. It has been labeled as Berge’s
maximal theorem in the literature.

Theorem 2.1. Let f : Y — R be a continuous function, and ¢ : X = Y be continuous and

compact valued at x € X. Thenn : X =Y is a u.s.c. and compact valued correspondence
at x where B(x) = argmax,c () f(y)-

Proof. First of all, since ¢(x) is compact and f(-) is continuous on ¢(x), there exists y €
@(x) that maximizes f(-) by Weierstrass theorem. Thus B(x) is non-empty.

Let (x, yn) — (x,y) € (X xY) where y, € B(x,) Vn, we want to show that y €
B(x). First, by uh.c of ¢ and y, € B(x,) C ¢(x,), y € @(x). Second, by l.h.c of ¢,
Y z € ¢(x), there exists a sequence of {z,} that goes to z and z, € ¢(x,). Since y, €
B(x,) maximizes f(:) in ¢(x,), it follows f(y,) > f(z,) Vn. Then we have f(y) =
lim, f(y,) > lim, f(z,) = f(z) from the continuity of f(-). Moreover, this implies
y € B(x), so that B is u.s.c.

In order to prove B(x) is compact, we only need to show that B(x) is closed since it is a
subset of the compact set ¢(x). Let {w, } be an arbitrary sequence in 8(x) which converges
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to w € ¢(x). By definition, f(w,) = maX;epx) f(t) = M for all n, hence f(y) = M,

which implies y € B(x). Therefore §(x) is compact. 1
A more general form of theorem 2.1 is given as a corollary.?

Corollary 2.2. Let f : X xY — R be a continuous function, and ¢ : X = Y be continuous

and compact valued. Then

e B: X =Y isaus.c. correspondence where B(x) = argmax ¢, f (X, y);
o the maximal function g : X — R is continuous, where g(x) = maxyeq(x) f(x, ).

Lemma 2.3. Finite product of u.s.c. (l.s.c.) correspondences is also a u.s.c. (l.s.c.) cor-
respondence. Product of correspondences is defined as follows: for each k = 1,..., K

we have a correspondence ¢r : X = Yy, then the product correspondence is defined as
0: X =Y =[], Vi, where o(x) =[]}, ox(x) C Y.

Now we give two useful fixed point theorems. The first one is Brouwer’s fixed point

theorem.

Theorem. Let D be a compact convex set in an Euclidean space,* and let f : D — D be a
continuous function, then 3x € D, s.t. f(x) = x.

From this theorem we can easily prove the following Kakutani’s fixed point theorem,
which plays a key role in establishing the existence of equilibria.

Theorem 2.4. Let ¢ : X =% X be u.s.c. and convex valued, where X is a compact convex
set in an Euclidean space, then 3x € X s.t. x € ¢(x).

3In fact, this is the primitive form of Berge’s maximal theorem. However the essence of the proofs in both
theorems are exactly the same.

“From a mathematical point of view, the convexity condition is neither intuitive nor critical for the existence
of a fixed point. A much better one could be that there’s no “hole” in the space, or equivalently, the space to
be contractible, both of which, in more advanced mathematical terms (algebraic topology), are defined as
the homotopy groups induced by the space are all trivial. Furthermore, this conclusion is in turn a simple
corollary of the result proved by Eilenberg and Montgomery (1946), in which the fundamental property of a
space admitting a fixed point is to be acyclic (that is the reduced homology groups are all trivial). However,
convexity is somehow a common assumption in economic models, and in particular, preferences of players in a
game can be easily and reasonably (or unreasonably) formulated in a way satisfying the convexity assumption,
based on which mathematical tools apply in a convenient way. For this reason we maintain this convexity
condition in the statements of Brouwer’s fixed point theorem and Kakutani’s theorem.
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By now, we are ready to prove the existence of Nash equilibria.

Theorem 2.5. Let I' = (S”, n")nen be a game satisfying:

e The strategy set S™ is a compact convex set in R¥™ 3 for eachn € N.
o The payoff function " : S — R is continuous on S = [| S™ for eachn € N.

e For each s € S the payoff function 7" (s|,t) of unilateral deviation is quasi-concave
int € S", foreachn € N.

Then, there exists a Nash equilibrium.

Proof. Define ¢,(s) = S” forall s € S and n € N, and obviously ¢, is continuous and
compact valued. Then by theorem 2.1 B"(s) is u.s.c. in S. And by lemma 2.3, f(s) =
B(s) x --- x BN (s) is also u.s.c. From quasi-concavity of 7" (S |,#), B hence B is convex
valued. Therefore, by theorem 2.4, 3s* s.t. s* € B(s¥). 1

» Feb.15, 2010

2.2 N.E. in A Generalized Game

In order to prove the existence of competitive equilibrium, we introduce the concept of ge-
neralized game (pseudo game) in this section.

Let N = {l,...,N} be a set of players. For each n € N, §" = the “underlying”
strategy set, and assume S” to be a compact convex subset of some Euclidean space. Let
S =S8!x---x SV, and define 7" : S — R as the payoff function for n. Let ¢, : S = S”
be a correspondence where ¢, (S) C S” for eachn € N .° Define T = (8", ", @n)nen as a
generalized game.

SStrategy spaces of different players may have different dimensions.

By writing ¢, (S) C S”, we mean ¢, (S) = Uses @n(s) C S, i.e., the union of all the image (set) of
@, over S, is possibly a proper subset of S". That is, the correspondence ¢, represents a certain restriction
on the feasible strategy that player n could take when the strategy profile other than » is fixed at s_, =
(s',...,s" 1 "1 sN). Inamore precise way, the only relevant domain for defining ¢, is merely S_,, =
Slx.oox S lx gntl ... SV or put in another way, it suffices to define ¢, (s", s_,) Ean(s_n), where
the latter one is a correspondence from S_, to S”. However, for notational simplicity, we still use ¢, (s) rather
than @, (s_). One also notes that when ¢, (s) = S” forall s € S, then T is no more than a standard game.
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Let B : S = S” be best reply correspondence of n for T, where

B" (s) = argmax 7" (s],1),
teQ”(s)

and B = B x --- x V. Define s € S as a Nash equilibrium of T if s € B(s).

The following theorem plays a fundamental role in proving the existence of competitive
equilibrium, following the approach of Arrow and Debreu (1954).

Theorem 2.6. Let I' = (S", ", ¢n)nen be a generalized game.If for each n, x" is conti-
nuous in s and quasi-concave in s", and ¢, is continuous, compact and convex valued, then
there exists a N.E. of T.

Proof. The proof of this theorem is exactly the same as theorem 2.5. 1



Chapter 3

Existence of C.E. in Pure Exchange
Economy

3.1 A Benchmark Case

In this section we prove the existence of competitive equilibrium in a pure exchange economy
& = (eh, uh)he g . The approach, due to Arrow and Debreu (1954), is based on generalized
game. We first consider the case in which strictly positive endowments of all households are
assumed, and in the next section, we’ll see how this condition can be weakened.

Theorem 3.1. Let & = (", u")yen be a pure exchange economy such that

e forallh € H, e" > 0;
e forallh € H, u” is continuous, quasi-concave and weakly monotone;

e foreach { € L, there is some h who likes €, that is u"(x) > u"(y) whenever x >y
and xg > yy.

Then, there exists a competitive equilibrium in &.

Proof. Let A = price simplex = {p € R%|Y",.; p¢ = 1}. Choose M > maxer Y ey €l
and define O = {x € R%|x; < M}. Define strategy set S = A x 0 x --- x [J, which is
_—

H
obviously a compact and convex set in an Euclidean space.
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Define H households as H players with payoff functions
a(p,xt, o xh )y =ut (), Xt el
And define one special player pr called price player with payoff function
P (p.x', o oxEy=p- O x" =Y e, peA.
For each h € H, define a correspondence ¢” : S = [ as follows
o"(p,x',....x™) = B"(p)nDO = B"(p),

By lemma 3.2 (following this proof), ¢” is continuous.!

Moreover, define ?” : S = A for pras ¢?"(p,x',...,x") = A, which is a constant
valued correspondence, thus is continuous obviously.

Nowlet N ={1,...,H, pr},S" =0,V h,and SP" = A. ThenT = (S™, ", On)nen is
a generalized game satisfying the conditions of theorem 2.6, thusaN.E.s = (p, x!,..., xH) €
S exists. We will verify this s is a competitive equilibrium in &.

Step 1: > x" <Y e

For all &, since x" € B"(p) C B"(p), wehave p-x" < p-e”. Summing over i, we have
p-(Cxt=3eM <o, 3.1)
Butif Y x” — Y el > 0 for some ¢, then by choosing

p=1,=(0,...,0,1,0,...,0) € A,
Lth

the price player can get positive payoff, contradicting (3.1).

Step 2: V i, x" maximizes u” on B"(p), not just on B”(p).
J

"In order to prove ¢” is Lh.c, the first condition in the theorem is necessary. For u.h.c, that is not necessary.
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B"(p) M

The main idea is illustrated in above figure. By step 1, we have
xP <M, veelL. (3.2)

Suppose instead there exists z € B”*(p) \ O s.t. u"(z) > u”(x"). By continuity of
u”(-), there exists a small open ball B(z) st. Yy € B(z), u"(y) > u”"(x"). Choose
one point Z € B(z) with p - Z < p - e". By (3.2), x" will never reach the bound of [J,
thus 3& > 0 small enough such that Z(g) = (1 — &)x" + €7 lies in the interior region of
B"(p). Therefor, we can choose § > 0 small enough s.t. z* = Z(g) + (6,...,8) € B*(p),
and by weak monotonicity, u”(z*) > u”(Z(e)). Since quasi-concavity of u”(-) implies
u(Z(e)) = minf{u”(z),u"(x")} > u*(x"), we have u”(z*) > u”(x"), which contradicts
that x” maximizes u”(-) on B"(p).

Step 3: p > 0.

Suppose p¢ = 0 for some £ € L. By the third assumption of the theorem, there is
an h who likes £. It follows that x” + 1, € B"(p), and by weak monotonicity there is
u(x" + 14) > u”(x"), an contradiction to step 2.

Stepd: p-x"=p-e",Vhe H.

Suppose p-x" < p-e” (notice that x” € B"(p),i.e. p-x" < p-e”). From step 3 and the
first assumption of the theorem, there is p-e” > 0, and it follows that x”+(§, ..., §) € B*(p)
for small § > 0. But u*(x" + (8,...,8)) > u”(x") by weak monotonicity. Contradiction
again.
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Step5: >, xF =3, el Ve L.

By step 1 we have )", x! <>, e?, ¥ € L. So the only possible violation is ), xJ <

>, el for some €. But since p > 0, this implies p- (3., x" =Y, e") = >, pe- Y, (xI —
eé’) < 0, which contradicts step 4. 1

Lemma 3.2. Assume e” > 0, then the correspondence B"(p) is continuous on the price
simplex A\, where B"(p) = {x € Rﬂp .x < p-eh}.

Proof. First we show such a correspondence is u.h.c. Let (p,,x,) — (p*,x) € A X Ri
with x,, € B*(p,), then by definition we have p, - x, < p, - e". Since inner product is a
continuous function, there is p* - x < p* - e”,i.e. x € B"(p*).

Second we show such a correspondence is also Lh.c. Let {p,} € A and p, — p* € A,
and fix an (arbitrary) x € B"(p*), we want to find a sequence {x,} € B"(p,) satisfying

X, — X.

Case 1. Suppose p*-x = 0. Since p-x is a continuous function of p, we have p,-x — 0.
Observe p - e’ is continuous on A and e’ >> 0, we have m = min peA P- e > 0. Therefore,
for n large enough we have p, - x <m < p, -e" ie. x € B"(p,). So, it suffices to choose

x, = x for large n and set the beginning elements of the sequence as e”.

Case 2. Suppose p* - x > 0. Lett(p) = % be a scalar function of p € A. Obviously,
t* =t(p*) > 1and ¢(p) is continuous at p*, hence t, = t(p,) — t(p*). Define x,, = %ﬁx.
Observe p, - X, = pp - ;—ZLx < t(pn)pn - X = pu-e", we have x, € B"(p,). Moreover,
lim, x, = ti*x lim, #,, = x. This completes the proof. |

» Feb.17, 2010

3.2 A Generalization

The positive endowment assumption e’ >> 0 in the previous theorem 3.1 is too strong and
not realistic at all — obviously, not everyone has everything. In this section, we will weaken
this assumption, and prove the existence of C.E. in & under a new assumption about the
endowment. To proceed, we first define some necessary concepts.

Definition 3.1. We say household h € H want’s commodity £ € L, if u" (x + 815) > u”(x),
Vxe Ri and § > 0. And say h has { ife? > 0.
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Definition 3.2. For {, k € L, we say directed arc (£, k) exists if there is a household h € H
who has £ and likes k. Moreover, commodity i is connected to commodity j if there is a
directed path from i to j.

The commodity set L can be viewed as a directed graph, with the directed arcs defined
by the above having-wanting property. In this sense, L could also be viewed as a having-
wanting graph.

Definition 3.3. Graph L is connected, if for all pairs (i, j) € L?, i is connected with j .

Theorem 3.3. Let & = (", u")hen be an pure exchange economy such that

e foreach h, u” is continuous, concave and weakly monotonic;

o the having-wanting graph of & is connected.

Then there exists a competitive equilibrium in &.

Remark 3.1. The first and third assumptions in theorem 3.1 together ensure that L is a con-
nected graph. More directly, those two assumptions read everyone has every commodity
and every commodity is liked by someone. So, in this sense the theorem stated above is a
generalization of theorem 3.1.

Remark 3.2. The intuition of substituting the positive endowment assumption in theorem 3.1
by the connected graph condition for ensuring the existence of a competitive equilibrium is
straightforward. Let (i, j) be an arbitrary pair of commodities in L, there exist a path from
i to j,i.e. there are {{{,...,¢,,} € Lst. i — £y — --- — {,, — j; this further implies
there are m + 1 household {A', ..., A"} such that h! has i and likes £;, ..., "1 has
£, and likes j. At the same time there’s another path from j to i, thus you can imagine an
buying-selling process from i to j, e.g h! sells i to who likes it and buys £, ..., A ! sells
£,, to k™ and buys j, .... By such an exchang procedure, all households will be satisfied
and no commodity will be discarded, i.e., all prices will be positive, a fact which suffices to
ensure the continuity of the budget correspondence (see lemma 3.4).

Proof of the theorem. For any ¢ > 0, define a perturbed pure exchange economy & (g) =
(e"(e), u"pen, where e (¢) = e" 4+ e(1,...,1)1xz. By theorem 3.1, there exists a C.E.

2That is there exist several commodities £1, . . ., £,, and the path consists of the corresponding directed arcs
(i5 El)v (51»52)7 ey (env j)'
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(p(e), (x"(&))nem) foreach . Observe that V ¢, p(g) € A, and (x”(¢))pey € O x --- x O =

H
O which are compact sets, thus there exists a sequence &, converging to 0 such that

(p(en), (X" (en))nerr) — (P, (x"nen),

where p € A and (x")pey € OF.
We’re going to prove (p, (x")nep) is the C.E of &.
Step1: p > 0.

Suppose there is an £ € L s.t. p; = 0. Since p € A, there exists k € L s.t. py > 0. By
the connected graph assumption, there is a path from k to £

k=ly—>tly—> - — by >L=4L,4.

Starting from k, let £;; denote the first commodity on the path of price 0. It follows
that pg, > 0, hence p¢, ., (ex)/pe;(en) — pe;./pe; = 0. Note £; and £; 4, are two
commodities connected by a directed arc, thus there exists #* € H such that it has £; and
likes ﬁj—i—l .

We claim that, for large n, x*" (g,,) does not maximize u”" (-) over B*"(p(e,)). Hence,
if we can prove this claim, then the induced contradiction to the fact that x*" (g,,) is h*’s
equilibrium consumption would imply that p, can not be zero, i.e., p > 0.

For each z € [, let H, : Ri — R be the family of supporting hyperplanes of the
graph of u”" () at the point (z,u"" (z)).* For h*, define a modified utility function i#*" (x) =
inf,e H, (x). Note that a so defined utility function ##"" (-) coincides with u”" (-) over [J, i.e.
" (x) = u" (x), Vx e O

Consider the family of modified economies & (e) = (e"(e), u")nem\ny U (e, a").
Since all C.E. allocations of & (¢) must locate in O 5 and 7" (x) = u""(x) over O, we
conclude that for each &, &(¢) has the same C.E. as &(g). Therefore x""(g,) must also
maximize " (-) over B* (p(en)).

h, we can choose

31n fact, for each e, the scale of the [, is associated with e” (¢). However, since e’ (¢) — ¢
a [J large enough, s.t. ., C O Ve.

“Note we only assume the utility function to be continuous and concave, therefore there may be more than
one supporting hyperplane at a given point. In addition, the supporting hyperplane could also be viewed as a
function.

>Note that [J does not depend on utility function, but only on endowment.
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. h* : h* L h*
Since we know e > 0 and py;, > 0, we can choose a point y" € ]R+ s.t. y* €

B" (p(en)) V1.l Letd = sup, " (x"*(g,)) —a"" (y"" ) leen xh*(sn) — x"" and ﬂh*()
being continuous over [J, it follows that d < oo. Define §** = (y1 yenn ’y‘51+1 . );ézj*ﬂ ’ ye,+1+1’ e, yL ) e

Ri. Observe the budget set of / can be written in the following form

B £i+1 Z h h ’

and provided that pg; , (6,)/ pe, (€n) — 0, as well as eh* > 0, we could choose %;1 (en) —
oo such that y""(g,) = (Y, ... ,yé’;l,yﬁ*) € B" (p(e,)) for all n.

However, since u”” (-) is strictly increasing in its £ J+1 argument, by lemma 3.7 (following
this proof), there exists k > 0 s.t. @" (" (e,)) = " (") + K(ylij+1(8n) y€j+1)'
Obviously, for large n, " (3" (e,)) — " (y*") > d, which implies @" (3" (¢,)) >
" (x"" (e,)). Observe that " (¢,) € B* (p(en)), the claim is proved.

Step 2: x” maximizes u”(-) over B*(p),Vh € H.

The basic idea for proving x* € argmax e i) u”(y) is to use Berge’s maximal theorem
(theorem 2.1). To this end, we introduce some notations.

For all 1 € H, define ¢" : A x 0 = [ where
o"(g,w") = BMg,w") NDO= (" eRilg-y" <q-w"}nD,

in which g and w denote the price and the endowment, and y denotes a possible consumption
bundle. By lemma 3.4 (following this proof), ¢” is continuous at (p, e”). Let 8" (q, w") =

argmax )uh(z) be the best reply correspondence from A x [ to . Since u”(-) is

z€ph (g, wh
continuous and concave, by theorem 2.1, " is u.h.c at (p, e”). Therefore, given x"(e,) €

B"(p(en), e"(en)) and ((p(en), " (en)), X" (en)) — ((p, "), x"), we have x" € B"(p, e").
Moreover, an analogous argument as step 2 in the proof of theorem 3.1 establishes that x”
maximizes u”(-) over B”(p), not only over B"(p) N L.

Step3: >, x" =, "
Since (x"(g,,))ne is competitive allocation in &' (g,) V, n, there is > xt(en) = Yo e(en).

Take the limit on both sides, we get _, x" = 3", e”. 1

Lemma 3.4. Suppose p > 0, then the correspondence ¢" : A x 0 = O is continuous at
(p.e") forallh € H.

®For instance, we can choose y"" = (0, . . ., e ..., 0).
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Proof. Since ¢" = B" N 0 and O could be viewed as a constant valued correspondence
from A x O to [J, so we only need to show B” is a continuous correspondence at (p, e”).
We employ similar devices as in lemma 3.2 to prove the continuity of B” at (p, e").

First we show B" is wh.c at (p,e"). Suppose ((pn.el). y*) — ((p.e"), y") with y! €

n
B"(pn, e,’l’). Since pj, - y,’l’ < Pn -efl’, V n, and inner product is a continuous function, there is

p-yh < p-eh,i.e. yh € Bh(p,eh).

Second we show B" is Lh.c at (p, e"). Let (p,, e?) — (p,e”) and V y € B"(p,e"), we
h

want to find a sequence {y"} s.t. y" € B*(p,,e") and y" — y*.

Case 1. Suppose p - y" = 0. Since p > 0, y* = (0,...,0). Thus, setting y* =
(0,...,0), V¥ n, is enough.
= q.wh

Case 2. Suppose p-y" > 0. Define 1 (g, w") e
at (p, e). Obviously, t* = t(p,e") > 1. Lett, = t(pn,e) and y" = %yh, then t, — t*
and y,’; — y". Observe p, ~y,}1’ = ;—an Y < tapn - yH = pa -e,’:, ie. y,}l’ € Bh(pn,efl’ .

, and evidently 7 (g, wh) is continuous

So {y™} fulfill our requirement. 1

In order to prove that ii”(-) satisfies the desired increasing condition (lemma 3.7), we first
prove a basic property for one variable concave function.

Lemma 3.5. Let f(x) be a concave function on R, then Y a < b < c,

fO) = f@ _ @O~ f@ _ fe)=f®)

b—a c—a c—b

Proof. Lett = %, we have 0 < ¢t < 1. By concavity of f(x), thereis f(b) = f(ta +

c—

(1—=1t)c)>1tf(a) + (1 —t)f(b). Thus we have following inequalities,
SO)—fl@) _ [tf@) + A -0)f()] - fla)

b—a b—a
_ flo)— fla)
N c—a
_ S —tf@)+ A —-1)f(e)]
c—>b
AR I
- c—b

Corollary 3.6. Let f(x) be a concave function on R, then its left and right derivatives exist
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respectively for all x € R and
fl(x) = lim f(x)_f(x_e) > i L FO ()

e—>0+ T e—>0+ €

= fi(x).
Moreover, ¥ x <y, there is

fLx) > fl(x) > f() = fLO).

Proof. For any sequence {¢,} with €, | 07, observe that %ﬂ(’c_e”)

is an decreasing se-

quence bounded from below by precede lemma, thus the limit exists. Similarly, the limit

of w exists. Moreover, observe for any n, f (x)_ef; =€) > [ (x+€:n)_f ) thus

fx+e)—f(x)
+ p :

1ime—>0+ M > 1ime—>0

For the second part, observe that there exists z s.t. x < z < y, thus for large n,

Jatea) - /) JRQ-SO) SO =@ fO) =S —en)

Taking the limit, we get the desired result. 1

Lemma 3.7. Let a function u : Ri — R be continuous, concave and strictly increasing
in its first argument, i.e. u(x + §(1,0,...,0)) > u(x) Vx € ]Rfr and § > 0. Define
0= {x € R_ﬂO <x; <ML =1,...,L} where M > 0 is a given number. For each
zelllet H, = {Hz’ : Rf_ — R,i € I,} be the set of supporting hyperplang of the graph
of u(-) at (z,u(z)) where I, is the index set,® and define ti(x) = infyen{H:(x),i € I},
V x € RE. Then, there exists k > 0 s.t. U(y1, X2, ..., X1) > U(x1, X2, ..., x1) +k(y1—x1),
Vx=(x1,...,xX1) GRI; and ¥ y, > xi.

Proof. Let X = (xa,...,x1) be the last L — 1 coordinates of x, and Vz € [, define
h(z) = infie; {01 H.}?

Step1: 3« > 0s.t. h(z) >k, VzeOand Vi € ;.

First, V x € 0= {x € ]RJLF_1|0 <x¢e <ML =2,....,L},let y = (y1,X), then
fi(y1) = u(y) = u(y1, X) is concave and strictly increasing in y;, V y; € [0, c0). Hence

(@) = J2(M +9) - fo(M) |

)
7« | ” means converging from above.
8Since we only assume u(-) to be continuous, at each point z, there may be more than one supporting
hyperplane, thus we use i € [ to label all these hyperplane. Note, this index set / may depend on z.

d . . . .
Here 9; = F Moreover, H! is a linear function for each i, hence d; H} is a constant.
X1
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with § > 0 fixed for all £ € [J. By the precede corollary, we know fi) = fio(M) >
k(X) > 0,Vy €[0,M]. Let y = (y1,X), observe h(y) = f{ (y1), thus Vi € Iy,
h(y) = k(%)

Second, let k = infiea/c(fc). Ob\ii\ously, k > 0. Suppose k = 0, i.e. there is a sequence
{Xn} s.t. k(x,) — 0. Since {X,} € [J which is a compact set, hence there is a subsequence
{Xn ) st X, = X* € [J. Observe k(%) = 6 '[u(M + 8, %) — u(M, %)] is a continuous
function of X, therefore «(X*) = limg k(X,,) = 0. However, since X* € [J, there is
k(X*) > 0. This contradiction implies k¥ > 0.

Third, Vz = (z1,2) € Dand Vi € I, since h(z) > k(Z), there is h(z) > k > 0.
Step 2: u(x) is concave on Ri.
Observe ii(x) = infien{H}(x),i € I;} = infyeninfie; {H(x)}, and on the same hy-

perplane H/(-) there is Hi(tx + (1 —£)y) = tHi(x) + (1 —t)H(y), Vx,y € R% and
Vielo1].

Therefore,

ii(tx + (1 —1)y) = inf inf {H.(tx + (1 —1)y)}

zeliel,

= inf ilenlfz {tH;(x) + (1 —0)H(y)}

> inf {t inf {H;(x)} + (1 —1) inf {H] (y)}}

zel

> ¢ inf inf {H}(x)} + (1 —1) inf .inIf{Hz"(y)}
zelliel,

zeliel,
= tu(x) + (1 —)u(y).
Thus #%(x) is concave.
Step 3: Increasing condition.
Vx = (x1,%) € REand Vy > xq, g(y) = u(y, %) is concave in y. Let y; > x; be
fixed, by lemma 3.5 and its corollary, there is

gy1) — g(x1) > o' ().
y1—X1
By definition, g(y;) = ti(y1, X) = inf,cn infieIZ{Hzi(yl,)?), thus g’ (y1) > inf,eq h(2). In
conjunction with step 1, we have
g(y1) —g(x1) > K.
y1i—X1
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Rearrange this last expression, we have

U(y1,Xa,...,xp) > t(xy,x2,...,x2) + k(y1 — x1). |

Remark 3.3. The proof of above lemma can be significantly simplified if we assume u”(-)
is continuously differentiable. Under this assumption, at each point z € LI, the only sup-
porting hyperplane is also tangent plane, and d; H, = d,u”(z) > 0. Observe d,u"(z) is
a continuous function in [J, thus the minimum of 9,u”(z) can be achieved, then there is
K = mingen d1u”(z) > 0.

The main logic of the theorem of connected graph is straightforward and can be summa-
rized as follows.

First, since the endowment may have zero components, we can not use a generalized game
framework to prove the existence of N.E equilibrium. The difficulty lies in the fact that the
budget set correspondence may not be l.h.c.

However, by perturbing of the primitive economy slightly, we can get a sequence of C.E.s
in the perturbed economies, and then taking a limit of this sequence of C.E.s, we get a
limiting price vector and a limiting allocation. Therefore, all we need to do is to prove the
limiting price and limiting allocation consist of a C.E. in the primitive economy.

It’s trivial that the limiting allocation also satisfies the market clearing condition, but it
is not easy to prove the allocation maximizes households’ utilities under the limiting price.
The difficulty again arises from the lack of Lh.c for the budget set correspondence.

To overcome this difficulty, the most prominent observation is that if the limiting price
vector is strictly positive, then the continuity of the correspondence can be guaranteed even
with zero components of endowment.Under the assumption of connectedness of having-
wanting graph of this economy, we can indeed show (not quite uneasy) the limiting price
vector is strictly positive. The technical difficulty for this part is to modified the primitive
utility function a little bit by taking the infimum of its supporting hyperplanes on a compact
set, and it turns out that this specific modified utility function has a particular increasing
property (no less than a linear increasing) along a particular direction.

Example 3.1. The first example is an illustration of the necessity of connected graph of an
economy for the existence of C.E. Consider a 2 x 2 economy with e! = (1, 1), e? = (2,0),
andu'(x,y) = y, u?(x,y) = x.
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o If p = (p1. p2) > 0, then argmax g1, u' is (0, % + 1) and argmax g2, u” is (2, 0),
thus market is not clear.

e If p = (1,0), then argmaxBl(p)u1 is (s,7) with 1 — oo and s € [0, 1], while
argmax g2 ) u? is (2, r) with r > 0, thus market is not clear too.

o If p = (0, 1), then argmax g,y u' is (¢, 1) with # > 0, and argmax g2, u> is (7, 0)
with r — oo, thus market is not clear once more.

Therefore, no C.E. exists. It is clear that the second commodity is not connected with the first
commodity, since the only household (household 1) who has the second commodity doesn’t
like it.

Example 3.2. The second example shows how the result of this theorem is stronger than
theorem 3.1. Consider a 2 x 2 economy with e! = (1,0), e = (0,2), and u'(x,y) = y,
u?(x,y) = x. Since initial endowment is not strictly positive, theorem 3.1 can not ensure
the existence of a C.E. in this economy. However, as household 1 has commodity 1 and
likes commodity 2, while household 2 has commodity 2 and likes commodity 1, the graph of
this economy is connected, thus by theorem 3.3 there is a C.E. It can be easily verified that
(p.x',x?) =((3,3).(0,2),(1,0)) isa C.E.



Chapter 4

An Economy with Production

4.1 Production: A Basic Formulation

» Feb.22, 2010

In this chapter, we turn to consider competitive equilibria in an economy with production.
The first thing we need to do is to formulate production properly, making it suitable for an
analysis of the equilibrium in an abstract economy, a la pure exchange economy in precede
chapters.

It turns out to be more convenient to use a more general formulation called production set
to characterize production instead of using production function. We assume all production
activities are carried out by some production units, each of which is called a firm. For each
firm, we use a production set, i.e., a set of all feasible production plans, to characterize the
technological properties associated with this firm. A production plan of a firm, analogous
to a consumption bundle of a consumer, can be viewed as a point (vector) in the enlarged
commodity space RY with L denoting the number of commodities in the economy. Each
coordinate of a production plan represents a quantity of the corresponding commodity. Con-
ventionally, a commodity is called an output in a given production plan if the corresponding
quantity in this plan is positive, and input if negative. In addition, if the quantity is zero, then
this commodity is irrelevant to the production plan.

On one hand, we restrict our analysis to the production plans only, ignoring the concrete
producing process. Any issues of management is absent in this setup. Actually, no human
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being is needed, while all we need is a machine which merely executes the production plan
automatically. On the other hand, we assume fully private ownership in this economy, i.e,
all firms are completely owned by the households in the economy in terms of equity and
dividends.

Let the household set H = {1,..., H} and the firm set J = {1,..., J}, both of which
are finite set. Let 9;‘ be the number of shares of firm j owned by household /4. A fully
private ownership requires 6] > 0 and > , 6] = 1,V € J. Let ¥, denote the pro-
duction set of firm j, where Y; C RE. By specifying preferences and endowments for
all households, a economy with production is summarized by the following tuple & =

((eh’ uh’ eh)hGH’ (Yj)jGJ)-

We presume that the objective for each firm is to maximize its profit by choosing a proper
production plan in its production set. Under the notation of production set, the profit resulted
from a specific production plan y’ of firm j is simply p - y/, where p is a price system
(vector).

Of course not an arbitrary subset of RZ viewed as a production set would serve our purpose
of investigating the equilibrium of an economy entailing at least some realistic sense. For
our purpose, it would be desirable to have production sets satisfy following assumptions.

Al Y NREY = {0}, forall j € J.
It means no firm can produce anything from nothing, however they are allowed to do
nothing by choosing y’/ = 0.

A.2. Y/ is convex and closed.
Since all commodities are assumed to be perfect divisible, it seems reasonable to as-
sume the production set to be closed. However, convexity is a really strong assumption,
as it implies (combined with the first assumption) that no firm could display increasing
return to scale.

A.3. Y7 is comprehensive, i.e. Y/ + RE C Y7/, where RE = —RE !
The essence of this assumption is free disposal, which means any excess supply in the
economy can just be thrown away. Yet in reality, it could be very costly to dispose
things, especially some by-products.

"Let A, B C RL, A+ Bisdefinedas{a +b :a € A,b € B}, and —A is defined as {—a : a € A}.
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A4 YNRy=Y'+..- 4+ Y7 NRE = {0}
Here Y represents the aggregate production set in this economy. This assumption is
not implied by the first assumption. It means all firms together can not do arbitrage.

AS5. Y N(-Y)={0}
Intuitively, if y is a possible aggregate production plan, —y is a production plan which
reverses the whole production process. This assumption excludes this possibility.

Before proceeding to the discussion of the competitive equilibria in this economy, we first
show some interesting and important properties of the aggregate production set implied by
the above assumptions.

Lemma 4.1. Let Y, ..., Y’ be production sets satisfying assumption A.2 to A.5, then the
aggregate production set Y =Y ' + ... + Y7 is convex and closed.

Proof. Convexity of Y follows directly from A.2 that each Y/ is convex. To prove the second
part, suppose there is an sequence {y”} where y" = Zje] yi€eY,and y" — y € RE, we
need to show that y € Y.

First, we claim that { Vi 42, is bounded for each j € J. Suppose in converse, that for
some j € J, {y7} is unbounded. Let K = {j € J | {y}};2, is unbounded}, then K is
nonempty. Define

d(n) = max||y?|| = max [|y"
() = max]|[y}]] = max [l
where || - || denotes the vector norm. Thus d(n) — oo, n — oo, and without loss of

generality, we could assume d(n) > 1 for all n. Moreover, let

w_ YN Y Yj
“ T A _Zd(n)+ 2 d(n)

JjEK jeJ\K
Sy g Y @
jek jeJ\K

then for each j and n, 7%} € Y/, since Y/ is convex, 0 € Y/ and d(n) > 1. On one
hand, observe that y” converges to y which is finite, hence z” converges to 0 as d(n) goes to
infinity; and since for j € J\ K, {y7} is bounded, it follows that z"} — 0. On the other hand,
observe that for some j € K, there must be |[y’|| = d(n) for infinitely many times,? hence

Note that d(n) must equal to some || Yill, j € K. Since the sequence of {d(n)} is infinite, it’s impossible
forall j € K that there are only finite times in which d(n) = ||y7}]|.
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n(m)
] . J
asm — oo, where z; € Y/ since Y/ is closed. Therefore, we can assume without loss of

we could find a sequence {n(m)} of index numbers such that z — z; with ||z;]] =1
generality that there is a nonempty set K’ C K such that z'; converges to z; € Y/ which
is not O if and only if j € K’. Now, by taking limit in n on both sides of (4.1), we have
0 =) ,cx 2j> Or equivalently

lj = — Z Zjr.

J'EK\{j}

Note that the LHS of this equation belongs to Y and the RHS belongs to —Y . However, by
A.5, we conclude z ; must be 0, which is a contradiction.

Next, given that whenever y" = ) jes Y > Y€ RE there is { Vi }o° | being bounded for
n(m)
J

converges to y; for each j respectively.® Since each Y/ is closed by A.2, we conclude that

all j, it follows that we could choose a sequence {n(m)} of index numbers such that y

yrm Zjej y/ €Y asm — oo. Note that y = lim,,_.0o y"" as well, thus we have
yevY. 1

Lemma 4.2. Let Y, ..., Y7 be production sets satisfying assumption A.2 to A.5, and let
e € Ri be nonzero, then (Y + e) N (=Y — e) is non-empty and bounded.

Proof. First we show (Y + e) N (=Y — e) is non-empty. By A.3, Y + RZ C Y, hence by
A4 —e =0+ (—e) € Y. Sowe have 0 = (—e) + e € Y + e. Same argument shows
0=e+ (—e) € (Y —e). Therefore (Y 4+ e) N (=Y — e) is non-empty.

Second we show it is bounded. Suppose in converse, there is a sequence {y*} C (¥ +
e) N (=Y — e) with ||y¥|| — oo. Obviously, y* —e € Y and y* + ¢ € (—Y). Without
loss of generality, assume ||y¥|| > 1, s0 0 < 1/||y*|| < 1. By the precede lemma, Y is
convex, thus y*/[[y*|| —e/|[y*|l € ¥ and y*/||y*|| + ¢/|[y*|| € (=Y) are uniformly
bounded, hence there are subsequence for each sequence that converge to the same point y
with ||y|| = 1. Also by the precede lemma Y is closed, thus y € Y and y € (—Y), and
therefore by assumption A.4 there is y = 0, contradicting. 1

3This sequence {n(m)} is not necessarily the same as the previous one. In addition, this sequence can be
constructed as follows: Since for j = 1, {y{'} is bounded, it follows that there is a converging subsequence
with the index sequence denoted by 71 (m); then since {y5" (m)} is also bounded, we could find a converging
subsequence with the index sequence denoted as 72, (7). Continue on this procedure, and we could find a index
sequence 71(m) such that for each j, {y;"""} is converging.
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4.2 Existence of C.E. in An Economy with Production

Given the formulation of production in the previous section, we now turn to define competi-
tive equilibria in such an economy.

Definition 4.1. A collection of a price system and an allocation including a set of production
plans (p, (x")nem, (y7)jes) consists of a competitive equilibrium (C.E.) in an econonry
with production & = ((eh, u" M nen, (Y7); e]) if following conditions are satisfied:

o Profit maximization. For each firm j € J, the production plan y’ maximizes the profit
over the production set Y/ given p, i.e.,

y/ € argmax p - Z.
zeYJ

e Utility maximization. For each household h € H, the consumption bundle x" maxi-
mizes the utility over the budget set defined by the endowment e" and its shares of all

firms {91}.‘}]-6] given p and {y’}, i.e.,

x"e argmax  u"(2),
z€B"(p,(y7)jer)

where
B"(p,(y))jes) = {x e R

p-xfp-eh+29§’p-yj}-

jeJ

e Market clearing.

Z(xh —eM —Zyj = 0.
h

J

We stress here that in the above definition, the term allocation no longer refers merely to
a set of consumption bundles which satisfies the feasibility condition as discussed in section
1.2, chapter 1. Rather, an allocation in an economy with production is perceived as including
a set of production plans {y/}, in addition to a set of consumption bundles {x”}, and all of
them together satisfy the feasibility condition specified by >, x* <}, " + >, y/.

Theorem 4.3. Let & = ((eh, u, 0" pen, (Y7); e]) be an economy with production, if

e foreachh € H, el > 0;
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e foreach h € H, u"(:) is continuous, quasi-concave and weakly monotone;
e foreach { € L, there exists an h who likes it;*

e cach production set satisfies assumptions A.l to A.5 in the previous section;

Then there exists a competitive equilibrium in &.

Remark 4.1. The original statement of this theorem is in Arrow and Debreu (1954: theorem
1). Regardless of slightly different assumptions with respect to preference and production,
the essence of the proof proposed here coincides with the original, both of which are based
on the existence of a N.E. in a generalized game.

Proof. Lete = ) ,ef and Y = > Y/. By lemma 4.2 (Y + ¢) N (=Y — e) is non-
empty and bounded, thus we can choose M > max{||z|| : z € (Y +e) N (=Y —e)}. Let
0= {x € RE|x, € [-M, M],V £ € L} and A be the price simplex. Define § = AxO7+/,
and a strategy in S takes the form of s = (p, (xh)heH, (yj)]'ej). Each household /4 is
regarded as a player with a payoff function 7" (s) = u”(x"), and each firm is also regarded
as a player with a payoff function 7/ (s) = p - y/. Define an additional player called price
player with a payoff function 7?"(s) = p - (Zh (x"—emh)y =3 j y/ ) Moreover, for each
household, define a modified budget set®

BMp, (v))jer) = 5" e RE|p-x" < p-e +max{0’29?p‘yj}}'
J

Now, for all s € S define following correspondences
¢"(s) = B"(p.(3))jen) NO. Vi
¢y =Y/ N0, VY
9P’ (s) = A.

“That is, whenever x > y and xg > yg, there is u” (x) > u”(y).

SIntroducing such a budget set is a purely technical trick to overcome the difficulty of the continuity of the
budget set correspondence would we encounter if we were to use the primitive form of the budget set. This
difficulty arises from the fact that, without additional restriction, e 4+ ; 91’.‘ y/ may not be strictly positive.
As summarized at the end of the proof of theorem 3.3, this backward leads to the lack of 1.h.c. of the budget
correspondence.



4.2 EXISTENCE OF C.E. IN AN ECONOMY WITH PRODUCTION 35

By lemma 4.4(following this theorem), ¢” is continuous, and the continuity of ¢/ and ¢?”
is a triviality. By now, we have a well-defined generalized game satisfying theorem 2.6, thus
an N.E. (p, (x")hen, (y7) jes) exists. We shall verify this is a C.E. in &.

Step1: p-y’/ >0, forall j.

Since 0 € Y/ N [, zero profit is always possible, thus p - y/ > 0. This also shows that
B"(p, (y7)jes) = B"(p.(y7)jes). since Y, 6% p - y/ is non-negative.

Step 2: Y, (x" —e") =Y, y/ <0.

Observe x" € B"(p, (y7)jes). hence p-x" < p-e? + 3", ;0% p-y/, and sum across
h together with the last condition gives us

p- Z(xh_eh)_zyj <0.
h J

Thus the optimizing by price player implies the desired result.
Step 3: x" maximizes u”(-) on B"(p, () jer)-

First observe that x” < > xh<e+ ZJ- y/ C Y + e, and xh e Ri C (=Y —e), thus

" is an interior point of [J.

X

Suppose there is z € B"(p,(y7);es) \ O with u”(z) > u”(x"), then by continuity
of utility there is a small ball B(z) centering at z within which each point has a higher
utility than x*. Thus we could choose a Z to be an interior point of B”(p, (y7) jes) with
u(2) > u(x"). Let € > 0 small enough s.t. Z(¢) = (1 —€)x" 4 €2 is also an interior point
of B"(p, (y7);es) N0, hence u”(2(¢)) > u”(x"). So we can further choose a small § > 0
st.y =2(€)+(,...,8) € B(p,(y7/)jes) NOand u”(y) > u”(x"). Contradiction.

Step4: p > 0.

Suppose p¢ = 0, then by the third condition there is an & who likes £, thus u” (x* + 1) >
u”(x"). Observe x* + 1, € B"(p, (y7)jer), which leads to a contradiction with step 3.

Step 5: ), (x" —e") =" y/ =0.

First observe that by step 2 and 4, there is p-x" = p-e” —|—Zj Gj?p-yj for all 4. Otherwise,
for sufficient small § > 0, x" + (§,...,8) € B"(p, (y/);es) which yields a higher utility.
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Summing over £ follows p - (Zh (x" —ehy -3 j y/ ) = 0. Rewrite this expression as

Yope| D (xi—e)=> ¥ | =0,
L h J

and observe the terms in the bracket are non-positive by step 1, so they must be O by step 4.
Step 6: y/ is an interior point of (I for all ;.

Bystep 5, Y, x" =Y ,e"+ Y, y/ € RE. Forany j* € J, of course y/~ € Y/* C
Y C Y + e. On the other hand, y/~ = — (e ¥ =2 xhy —e Notice )« y/ €Y
and — ), x" € RL, hence the difference belongs to Y, thus y/~ € (=Y — e). Observe
(Y 4+ e) N (=Y —e) is contained in the interior of [J, therefore y/” is an interior point of (1.

Step 7: y/ maximizes profit over Y/ for all ;.

Suppose conversely there is a production plan z € Y/ \ O with a strictly higher profit,
then by convexity of Y/ for any € € (0,1), 2(¢) = (1 —€)y’ 4+ ez € Y/. Further,
by step 6, Z(e) € Y/ N O whenever ¢ is small enough. However, this implies p - Z(¢) =
(1—€)p-y’ +€ep-z > p-y’, which is contradicting with y/ maximizing profitin Y/ N |

Lemma 4.4. Let ¢"(s) be the correspondence defined in the previous proof. then ¢" is con-
tinuous over S.

Proof. Since ¢"(s) = B"(p.(y/)jes) N O, it suffices to show B”(p, (y7),es) viewed as
a correspondence from S to ]RfL is continuous. For the u.h.c part, the proof is quite straight
forward, provided that inner product is a continuous function. For the 1.h.c part, given the
particular form of this modified budget set, we turn to consider the following two cases.

Case 1. Suppose x € B"(p,(y))jes)s pn — pand y, = (y!.....y)) - y =
', ..., y7) with Zj pr -y/ < 0. Then there is p - x < p - e”, and use the same ar-
gument as in lemma 3.2 will prove the lower hemi-continuous provided that e” > 0.

Case 2. Suppose now Zj Hjl-‘p-yj > 0, then thereis p-x < p-e + Zj Hji-’p-yj. Once
again, the same method in the proof of lemma 3.2, i.e. defining ¢ (p, y) = (p-e" + Zj Gj.’p .
y7)/(p - x) where p - x > 0 and letting x,, = x where p - x = 0, suffices to complete the
proof. 1
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4.3 Pareto Optimality in &

We will establish the Pareto optimality of C.E. in an economy with production. Notice that
in an economy with production, the resource constraint for each household takes a very
different from as in a pure exchange economy, hence we can not demonstrate the Pareto
optimality using those results in pure exchange economy directly. Alternatively, we need to
extend the concepts discussed in the case of pure exchange economy to incorporate properly
the resource constraint in an economy with production.

At this stage, we do not assume & = ((eh, u, 0" pen. (Yj)je]) satisfies any conditions
listed in theorem 4.3, nor the assumptions about the production set in section 4.1. However,
we do emphasize that whenever we are talking about an allocation in &, the feasibility
condition is presumed to be satisfied.

Definition 4.2. Let ((x")pen, (y7)es) and (W phen, (z/) jes) be two allocations in &.
We say the former one is Pareto superior fo the latter one, if u" (x"*) > u”(w") for all h and
u(x"y > u(w") for at least one h.

Definition 4.3. An allocation ((x")neH, (y7) jes) is Pareto optimal in &, if there is no other
allocation which is Pareto superior to this one.

To spell out the Pareto optimality of C.E. in & in a precise way, i.e. only the allocation
in a C.E. has to do with the welfare justification, we define competitive allocation as in the
case of pure exchange economy.

Definition 4.4. We say ((x")nem, (y/)jer) is a competitive allocation in &, if there exists a
price vector p € Ri s.t. (p, CMper, 97)jes) isa CE. in &.

By, we could lay out the main result in this section regarding to the welfare property of
C.E., that is the first theorem of welfare economics in & .
Theorem 4.5. Let & = ((eh, u, 0" pen, (Yj)jej) be a production economy, and assume

utility to be weakly monotone. Then, all competitive allocations in & are Pareto optimal.

Proof. Let (x")ner, (/) jes) be a competitive allocation, and p be the price vector with
which the competitive allocation consists of a C.E.

Suppose conversely there is an allocation {((w"),cq, (z7)es) in & which is Pareto supe-

rior to ((x")per, (/) jer).
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First, since there is one & with u”(x") < u*(w"), then p - w" > p-e + ZJ- Gj‘p - y/
for this /; otherwise w" € B"(p, (y”/);cr), which contradicts the optimality of x* in h’s
budget set. Further, observe for each j, z/ yields a profit at most as high as p - y/, thus
> Gj-'p eyl > > pr . z/ provided 9;-’ is non-negative. To sum up, we have p - w”
p-et+Y 0tp-2).

Second, since for each & € H there is uh(xh) < uh(wh), there is p - wh > p- el +

>

> j 9}’ p- v/, otherwise by weak monotonicity there exists a 1" which yields a higher utility
than x”. Moreover, since p - y/ > p-z/ forall j, we have p - w" > p-e" + Zj Gjl-’p .7/
for all A.

ini i cwh el .7 i
Comblnmg.these two, it follows that >, p-w” > >, p-e” + > ;p-zt. H.owever, given
((W")ner, (z7)jes) is an allocation in &, there is Y, w" < >, e + >_; 27, which leads
to a contradiction provided that p is non-negative. 1

4.4 Individualized Economy

Since we put no restriction on the separability on the technology, we could split a firm j
into H parts according to the shares of j owned by each household. Now each household
h owns entirely a firm described by the production set leYj . Under this point of view,
a new economy is defined with J x H firms owned by H households, and we call it an
individualized economy of &, denoted by &. Observe that the budget set of each household
in this economy is exactly the same as in &. Moreover, on one hand, whenever yf maximizes
the profit of firm j over Y/ given p, 6% y/ will maximize the profit of firm (k, j) over 67Y/
with the same price vector; on the other hand, once yﬁ-’ maximizes the profit of firm (%, j)
for some A given p, then yj-l /6 ]h will maximize the profit of firm j in the primitive economy
& with the same price vector. As a result, we have following corollary of theorem 4.3.

Corollary 4.6. Let & = ((eh, u, 0"y pem., (Y7) je J) be an economy satisfying all conditions
of theorem 4.3, and & be the individualized economy of &, then the competitive equilibria of
this two economies coincide.

» Feb.24, 2010

The most prominent advantage of considering individualized economy is that it enables
us to discuss core allocation in an economy with production. Since in an individualized
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economy, all firms are individually owned, there is no conceptual difficulty of defining core
. . . . . o . s _ h h h

allocations in this economy. For notational simplicity, let & = (e ut (Y e _]) hey denote

the individualized economy. Note, as in discussion about Pareto optimality in the previous

section, here we do not assume & satisfies any conditions listed in theorem 4.3, including

the assumptions about production sets in section 4.1.

Definition 4.5. For a subset S of H, an allocation {(x")pes, (y‘?)(h,j)esxj> is called an
S-allocation in &, if g X" <Y pes e + Y es > eV

Definition 4.6. An allocation (x")en, (y;l)(h’j)eHXJ) is a core allocation in &, if there
exists no S -allocation (W")pes, (Z?)(h,j)esxj> where S is a subset of H, such that

ul(wh > u(x"), Vhes;

ul (") > u(x"), foratleastone h € S.

The following theorem demonstrates that C.E.s in an economy with production entail a
welfare property that is stronger than the Pareto optimality.

Theorem 4.7. Let & = (eh, u”, (th)jej)heH be an individualized economy with utilities
satisfying weak monotonicity. Then each competitive allocation {(x")hen, (yi-’)(h, YeHxJ)
in & is also a core allocation.

Proof. The proof is almost the same as that of theorem 4.5, while the only difference is that
we sum over & in S instead of in H in this proof and get >, ¢ p - w" > >, o p-e +
D ohes 2 0;’ p - 27, which contradicts the feasibility of an S-allocation. 1
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Chapter 5

Miscellaneous about Competitive
Equilibria

5.1 Competitive Allocation as Limiting Core

The existence theorem about competitive equilibria in an economy doesn’t tell us how these
equilibria can be achieved by means of market activity, or in a much weaker sense, how
competitive equilibria could be viewed as results from interactive activities of market parti-
cipants, saying household and firms. From another stand point, as we showed in previous
section, under very weak condition, each competitive allocation is in the core of the eco-
nomy. And since core allocations could be viewed as the somehow reasonable results from
interactive activities of market participants, i.e. no coalition is needed for getting a higher
utility thus everyone will stay in the market and trade with each other, we could regard com-
petitive equilibria as reasonable consequences in a (private) competitive market economy.
However, one problem is there may exist much more core allocations in a economy than
competitive allocations, and this fact prevent us from convincing the competitive equilibria
being the unique reasonable consequences of market activity. Why should the household
prefer a competitive equilibrium to a core allocation?

There were some reasonable arguments advocating competitive equilibria as proper and
necessary result of competitive market as early as in 19th century. In his prominent book,
Edgeworth (1881) illustrated that the core of an economy would shrink to competitive equili-
bria as the number of consumer tending to infinity by using his famous box, of course, there
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are only two types of consumer with the number of each type going to infinity. However
this result depended essentially on geometrical interpretation of the economy with only two
types of consumers, and it is quite not clear about whether or not the desired result will also
hold when there are more than two types of consumers.

This problem is solved astonishingly in an elegant paper by Debreu and Scarf (1963), in
which all proof is short and easy to understand. In this article, Debreu and Scarf considered
a pure exchange economy &'(r) consisting of m types of consumers and within each type
there are r identical households, i.e. with identical preference and endowment. By imposing
strictly convex preference' for each household, they showed in each core allocation for &(r),
each household in the same type will get the same consumption bundle. Therefore, one
only need to consider m consumption bundles when changing r. They also pointed out
two facts that the set of core allocations of & (r 4 1) will be contained in that of & (r) and

the competitive allocation of the economy with one household in each type will also be a

o0

competitive allocation of &(r)?, thus N2,

{core allocations in &(r)} is not an empty set,
which means one can consider an allocation® that belongs to the core for all & (r). With this

preparation, Debreu and Scarf laid out following theorem.

Theorem. If (x1,...,X;) is in the core for all r, then it is a competitive allocation.

Therefore, roughly, we can say competitive equilibria become the unique reasonable con-
sequence of the competitive market activities when there are infinitely many consumers in
the market, at least if we restrict our criterion of “reasonable” to core allocations.

Debreu and Scarf (1963) also give two extensions of above theorem, that one is a relaxa-
tion on preference being convex but not strictly convex, and the other one is a similar result
in a set up of production economy.

No surprising, one may wonder what will happen if no identical households are assumed,
or equivalently what’s going on if the number of types changes. For this kind of questions,
the answer is similar to above theorem, that the core will shrink to competitive equilibria
when the total number of household in the economy tends to infinity, provided that the eco-

! Preference 2~ is strictly convex in a consumption space X, if for any x, y € X with x = y, there is
ax + (1 —a)y >yforalla € (0,1).

2I.e. households of type ¢ in &(r) will get the same C.E. consumption bundle as the only household of type
tin &(1).

3 No matter what r is, we can always treat an allocation in &(r) as consisting of m consumption bundles.
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nomy becomes more “competitive”, which can be formalized as

supy [|e” |

1 2h el

i.e. the ratio of endowment of any household comparing to the total endowment falls to zero

— 0, when H — o0,

as the number of households goes to infinity.

5.2 Uniqueness of Competitive Equilibrium

One problem with competitive equilibria, as Nash equilibria, is that there may exist more
than one equilibrium. For example, consider an 2 x 2 Edgeworth box with e! = (2,0),
e? = (0,2), and u!(x, y) = min(x, y), u'(x, y) = min(x, y). Then it’s obvious that every
point on the line from (0, 0) to (2, 2) is a competitive allocation.

The most famous condition addressing this problem is called gross substitution, which is
a sufficient condition to ensure the uniqueness of competitive equilibrium.

Consider a pure exchange economy & = (e”,u"),cy where demand function x”(p) =
x"(p,et) = argmax e gi (p oh) u”(z) is well defined, e.g. imposing strict convexity to the
preference, and let z"(p) = x"(p) — e” denote the excess demand function, where both
x"(p) and z" (p) are vector valued function from Rf; to Rf;. Further define aggregate excess
demand function as z(p) = >, z"(p). Notice, z(p) = z(a - p) forall p € Ri and all
scalar o > 0.

Definition 5.1. z(p) satisfies gross substitute property, if for all £ € L and all p, p’ €
RE\ {0} s.t. p, > pg and Py = Pk Yk # L thereis i (p') > zk(p), Vk # L.

Gross substitution characterizes a property of the excess demand function, that once you
increase the price of one commodity and keep all other prices unchanged then the excess
demand for all commodities except this one goes up.

As we know, a price vector p and a set of allocations (x"),em consist of a competitive
equilibrium in &, if and only if

z(p) = th(p)—Zeh = th—Zeh =0.
h h h h

With this observation, we could easily prove following uniqueness theorem about competi-
tive equilibrium.
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Theorem 5.1. Let & = (", u") e be a pure exchange economy where demand function is
well defined and all possible competitive equilibria consist of strictly positive price vectors
4. If the aggregate excess demand function z(p) of & satisfies gross substitute property, then
there is unique competitive equilibrium’ in &.

Proof. Tt suffices to show if p! and p? are such that z(p!) = 0 = z(p?), then they are
collinear, i.e. p! = ap? with « > 0. Suppose conversely, then, since p!, p? > 0, we can
assume p? > p' with p7 = p; and for some component strict inequality holds. Consider
a procedure in which you increase the price for one commodity k other than / from p,l to
p,%. Observe z¢(-) will not decrease in this procedure, and moreover, it will increase by
a strict positive amount at least in one step since p,% > p,i for some k. Hence we have
ze(ph) > z¢(p?), which contradicts with z(p!) = 0 = z(p?). 1

An example of gross substitution is the demand function derived from constant elasticity

of substitution (CES) utility function. Let u(xy, ..., xz) = (e x{ +-+-+arx?)/? be a CES
utility function where oy, ...,az > 0 and p € (—00, 00). Suppose initial endowment to be
e = (e1,...,er) > 0, and the corresponding Mashallian demand function is x(p,e) =

(x1(p,e),...,xp(p,e)) . It can be showed that dxi /dpe > 0, for k # £.

In general, no extension of gross substitution property is made for a production economy,
since it seems not reasonable to assume that whenever the price of one commodity goes
up, a firm would increase its demand (as input) or reduce its supply (as output) of other
commodities.

5.3 Second Welfare Theorem

In fact, second welfare theorem, sometimes also called the second fundamental theorem
for welfare economics, said nothing which makes sense, and it’s an empty theorem. This
theorem asserts that every Pareto optimal point in an economy with convex preferences and
convex production sets can be achieved as a competitive allocation by appropriate lump-sum
transfers of wealth to each agent.

4 This is a somehow technical condition which is not emphasized in MWG pp. 613.
5 0Of course, if (p, (xX")per) is a C.E., then for any positive scalar o, (ap, (x*)peq) is also a C.E., and we
shall refer these two as the same competitive equilibrium in &.
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However, from the existence theorem for competitive equilibrium proved in previous secti-
ons, it’s not too difficult to show that for each Pareto optimal point, the social planner can
first redistribute the initial endowments e = ), e” to each household and each firm accor-
ding to the Pareto optimal allocation ((x")sex., (¥7) jeJ, at the same time from the Pareto
optimal allocation the social planner could find a proper price vector p such that each hou-
sehold & maximizes its utility within B"(p, (y7),es) and each firm j maximizes its profit
in Y/, then the social planner could decompose all the firms in a way like constructing an
individualized economy and redistribute 9;’ yj to household /. After all this done, the de-
sired Pareto optimal is a natural consequence of these redistributed endowments, or if you
like, lump-sum transfers of wealth, since the social planner just puts the economy into a
competitive equilibrium.

More intuitively, we can consider a pure exchange economy with differentiable utility
functions, and suppose we have a Pareto optimal allocation (x”);c g which is a interior point
of RE#. We're going to show Vul(x!) = --- = Vuf (xf), where Vf = (%,---%)
denotes the gradient of f(-). Suppose not, say, Vu'(x') # Vu/(x’), then we could find
a vector Ae s.t. €' + Ae, e/ — Ae € RE, and Vu' (x') - Ae, Vu/ (x7) - (—Le) > 05
But this leads to a contradiction since ¢! + Ae, e/ — Ae is also attainable within initial
resource constraint. Now, let the price vector p = Vu!(x'), and redistribute the endowment
as (x")ncq, we get a competitive equilibrium, but in fact there is no trading here since the

economy has already been put in a competitive equilibrium.

® You may recall a problem in the final exam by Prof. Muench last semester which showed how you could
find such a vector.
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Chapter 6

Uncertainty

» Mar.1, 2010

6.1 Time, Uncertainty and Information Structure

This section is supplemented completely by Yan Liu. A general form of information structure will be
introduced, which I wish to be of some help in understanding the setup of models in various fields in
economics whenever time and uncertainty play a fundamental role. Nonetheless, all our discussion
in the following sections will based on a simplest version of information structure, and no difficulty

should be there if you decide to skip this section.

Consider an economy whose activities extend from 0 to co. Denote time period ¢ =
0,...,00. Basically, the uncertainty arises because the economy may stay in an arbitrary
state s; € S;, where S;, state space at t, is the set of all possible states at 7, e.g. the economy
may be in a drought or not in a particular year ¢, thus S; = {drought, normal}. We’ll always
assume there is no uncertainty in the initial period f = 0 !, i.e. S, has only one element; on
the contrary, there are uncertainty from¢ = 1,..., 0o, i.e. S; has more than one element for
all 7 from 1 to infinity. In general, no restriction on S; to be finite set is imposed.

Let S = []32,S: = So x -+- x S; x --- be the set of all possible states in the economy,
and let S* = ]_[’rzo S: be the set of all possible states up until time ¢, forallt = 1,2,.... It

' We can also consider the case in which uncertainty appears from this initial period, however it seems few
models are set up in this way.
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is clear that S C S'*! V ¢. Further, we call s* = (¢, 51,...,5/) € S* a path from 0 to ¢,
and s = (s9,S1,...) € S a path of this economy.

Of course, our objective is to distinguish different commodities at time ¢. It is obvious
that an apple and an orange at time ¢ should be different commodities, no matter what state
it is in the economy. However, in an uncertain circumstance, not only physical property
or merely time is of great importance to a complete characterization of a commodity, but
the state in which the commodity is at time ¢, moreover, perhaps all the underlying historic
states where it has stayed before time 7 are critical for a fully understanding of its current
relevance to the economy. For example, consider an economy extends for three periods, and
S; = {drought, normal} for ¢ = 1,2. Suppose you have one bottle of water at t = 2, and
also assume it is in a drought at # = 2. In such a case, it’s quite possible that your valuation of
the water will differ given different states in which the economy was in the previous period,
i.e. you may valuate the water much higher if it was also a drought at # = 1. In this sense,
we would like to distinguish this particular bottle of water with a label of (drought, drought),
and say this bottle of water is a bottle of water contingent to an event {drought, drought)?.

In above example, we make a comprehensive distinction of commodities in a uncertain
world by using event contingent notion®. However, the particular event {(drought, drought)
in this example is merely a point of state space S? = S; x S,*, and it could be more
convenient if we define an event as a subset of S?. We could elaborate this idea by following
example. Suppose we use precipitation measured by millimeter to indicate a particular state
where the economy stays, hence the state spaces for this economy now become S§; = S, =
[0, 00). Moreover, let 50mm be the criterion of drought, so whenever s; < 50 the economy
is in a drought. With this notation, the previous event (drought, drought) has a new form
{(s1,52)|0 < 51,5, < 50} which is a subset of $2 = §; x S>.

With this understanding, we want define a event e’ to be a subset of S’. However, not an
arbitrary subset could be called as an event. Consider a set defined as e = {(s1,52)|0 < 57 <
50, 0 < s, < 40} in the previous example. e is an subset of S 2 but it is not an event, since
we have never defined what is {0 < s, < 40}.

Therefore, first define spot event e, as a non-empty subset of S;, and spot event set E; as

2 Event contingent commodity is a more general concept compared with state contingent commodity that

will be introduced in the following section, in which a two period setup is laid out.
3 We use this term following Debreu (1959: Ch.7).
4 Notice Sy is s singleton set, hence it doesn’t matter to omit So from S2.
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a collection of all spot events at 7 of which the union contains S;°. Notice, two spot events,
as subsets of state space, may have non-empty intersection.

All spot event sets, with underlying state spaces, are given a priori as a component of the
economy, as the agent set, relevant substance and the action set (like production plans in a
production economy) in this economy, and implicitly, time structure in this economy is also
fully specified at the same time.

And then, define a event e’ as a sequence of spot events taking the form of (eo,...,e;),
which is equivalent to the recursive form (e’~!, e;); naturally, the corresponding event set is
defined as a set of all events at z,i.e. E! = Eo x---x E;. Obviously, E! C E'™!, and a path

st eeliffsg € eg,...,s: € e;.

It is clear that once all event sets are specified in the economy, the spot event sets are also
specified.

Uncertainty unfolds according to the time. At the beginning of each period, the economy
will switch into a new state. This state may not be observable, but all events containing
this state will be observed. With this information, all future events with this history are also
determined.

Hence we give following definition of information structure.

Definition 6.1. A collection of event spaces (E"),-, with underlying state spaces (S;);>,
both of which are given as components of an economy &, are called the information structure

of &, and each E' is called the information set by time t.

By now, we have not employed any probabilistic concepts to characterize the uncertainty
in the economy, and the information structure are described in the term of events. Yet, for a
more analytic framework, we would like to have the information structure compatible with a
probability model, where more powerful tools can be used.

To achieve this objective, the only modification is to extend spot event set E; to be a o-
field, of which the elements are subsets of S;°. Let E, denote this o-field as well, and call it

> This condition is a natural requirement as we don’t want to see the economy stays in some state that no
event occurs.

6 Given state space 2, a o-field .% is defined as a collection of subsets of 2 which satisfies: i. Q € %, ii. if
A € %, then the complement, A€ € 7 iii. if A, € #,n =1,...,00, then U, A, € Z. Given state space S;
and spot event set E;, one can find a minimal o-field .%; that contains E;, and we call it the o-field generated
by E;, which is also denoted o (E;).
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spot event field. Then, define event field by time t, E*, as EgX---x E,, which is also a o-field.
Finally, define event field E = U;soE' = [];2, E:, so a probability P : E — [0, 1] can be
defined. Now, the probabilistic version of our information structure becomes a probability
space (S, E, P). In most models, the o-field E” is also called information set by time ¢.

6.2 Arrow-Debreu Economy

We’re going discuss uncertainty in an economy.

Let L = {1,...,5} be a set of 5 different commodities, S = {l1,...,4} be 4 possible
states in which our economy could be, and 7" = {1, 2, 3} be 3 different time periods during
which activities take place.

We can consider the commodities in a funny way, saying state contingent commodities, i.e.
a commodity £ which is available at time 7 in state s, denoted as £t s, is a different commodity
from £1's’ where t's’ is a different time-state combination’. Since time could be viewed as
a special kind of state, it’s convenient to omit time index, and use ‘“state contingent” only
to denote different commodities. In addition, we assume there are 60 markets here, i.e.
complete market, each of which is opened for trading a distinct state contingent commodity.
Thus oranges in a sunny day could be traded with apples in a rainy day, or even with oranges
from the same tree but in a rainy day, at least in the sense of promises of delivery in a specific
state.

But actually, it is a very bad model to assume complete markets, since we need too many
markets to support all the trading between two different state contingent commodities, espe-
cially when the number of possible states in the economy is huge. In real world, it is always
the case that there are too many states, yet without enough markets.

Even though, it is of great value for us to consider a complete market setup for uncertainty
in an economy, because with the notion of state contingent commodities, we could treat
uncertainty exactly in the same way as an deterministic complete market model, in which
existence of competitive equilibria is already established, and various concepts of welfare
optimality have been investigated.

Formally, consider a two period economy consists of a set of households H = {1,..., H}

7 One index could be the same, i.e. even if one of t = ¢’ and s = s’ is true, £¢s is still different from £¢'s’.
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and asetof firms J = {1, ..., J}, where a private ownership is assumed, saying (9]}‘) ) eHxT
is given with ), 9;’ = 1. There is no uncertainty in first period t = 0, and the economy
may stay in one state s € S in the second period ¢t = 1, where S = {1,...,S} is a finite
set of possible states® in 7 = 1. At¢ = 0, no commodity is available, and at r = 1, a set of
different kinds of commodities L. = {1,..., L} is available, i.e. delivery will be made and
all commodities will be consumed once a specific state reveals. Therefore, consider contin-
gent commodity space Rf‘,_s, where each point x = {x11,...,X11,...,X18,...,XLs}is a
collection of the quantity of every kind of commodities in every state. An endowment vector
eh e RJLFS is specified for each household % a priori, and h knows this information ex ante,

but only e/ = {eh . ..., eﬁs} will be given to £ if state s reveals.

For each state contingent commodity, there is a market opened at the beginning of t = 0,
hence a (relative) price system p = (pes) syeLxs € Ris \ {0} is observable by all house-
holds and firms. Moreover, denote ps = (pis, ..., PLs) € Ri \ {0}, and p = (p1,..., ps).

Each firm will choose a production plan y/ € Y/ C RES, where production set Y/ depicts
the technological restriction for possible production allocations in every state, to maximize
the ex ante profit®, p - y/ within this price system p. Denote y! = (y{s, ey yis) e RE,
and y/ = (y‘li ey yé). One could imagine this firm j writes down this production plan as
a promise, and after the state at ¢ = 1 reveals, it will deliver what ever written as positive
entries in the promise ysj and receive whatever written as negative entries.

Each household / will choose a consumption plan x” € Ris according to the observed
price system, the endowment known a priori and the profit share from firms, by maximizing
ex ante utility '°, given by utility function u”(-) defined over Ris . More specifically, the ex

8 Using the notions in the previous section, each state here by itself is a event.

° One might wonder why a firm should maximize a so defined profit. In fact, rewrite p - y/ as ) s Ds- y! ,
where ysj is production plan for state s. We see once j maximizes p - y/, the ex ante profit p - ysj in state
s will also be maximized. However, since p, represents relative prices, p; ysj is the ex post profit in state s
under py as well, and hence is also maximized.

19 One may wonder as in the case for firms why household # would maximize such a ex ante utility. Since
its ex post utility should come from its consumption in a particular state s, hence it seem more reasonable for &
to maximize its utility separately in each state. However, for such a reasoning, one conceptual problem arisen
here is what utility function % should use for such a purpose?

Since u"(-) is defined on RLS, it seems that the utility level in state s may depend on its consumption plan
h

for other state as well, if we use uh(. ... X, ...) directly to measure its utility.
However, consider a case in which & has two states, one is in good luck and 4 might win $500 or more

in lottery, while the other one is in bad luck and % could only win less $20. If possible, let u(g, b) denote
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ante resource constraint of /1 is given by a budget set as follows,

h i LS h h j
B"(p,(3)jes) ={x eRES|p-x < p-e"+) 0/ p-y’
JjeJ
And h is going to maximize its utility on this budget set and make the decision about its
consumption plan at # = 1 according to this price system. One can imagine s writes down
its net demand x" — e" — " ;0 7 ¥7 as a promise, and acts in a similar way as firm ;.

In general, we call such a setup a Arrow-Debreu economy. Evidently, we can treat this
economy in the same way as a deterministic economy. We could define Arrow-Debreu equi-
librium, which is merely competitive equilibrium in this setup, as we did before, and we
could establish existence of competitive equilibria using the same theorems. Now, we just
laid out the definition for equilibrium as follows.

Definition 6.2. (p, (x")nen, (y/)jes) is a competitive equilibrium (C.E.) of an Arrow-
Debreu economy, if

o Firms maximize profit.
y/ € argmax,.y; p-z, Vj € J.

e Households maximize utility.

h

x" € argmax e ga(p (yi);c,) uh(z), Vhe H.

e Market clear.
>, (xh—ehy — > y/ =0.

h’s utility function with g being the money won in good luck and b in bad luck, and also assume u(g, b) is

differentiable. Should /s utility level u(g, 15) increase as he is in bad luck already and wins only $15 ex post
while if he’s in good luck and wins more and more money? This question seems ridiculous since / can only
be in one possible state, either good or bad luck, but can not be in both. Thus it seems reasonable to assume
du(g.b)/dg=0 for any given b, saying there’s no cross effect between different states.

And in this sense, one should be able to write u” (x, ..., x%) = 3 u"(x]), where u” () is a state specific
utility function. Once u”(-) has this form, / could maximize u(x{‘, . ,xg) with respect to x; only, and no
worried about effects from consumption plans in other states is needed.

Debreu (1960) proves that once utility function has such a state independent property, then it could indeed
be written in additive form. It is also worth to mention that expected utility by definition posses such a property.

Back to our original problem, whenever state independent property is assumed, then maximizing u” () on
the ex ante budget set is equivalent to maximize u”(-) w.r.t xﬁ‘ only on a degenerate budget set {x € Ri :
PsXs < Ds -eﬁ’ +> jeJ 91}.‘ Ds+ ysj } for every state 5. Since p; represents relative price in s, the last assertion
implies xﬁ’ also maximizes ex post utility in this particular state.
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6.3 Assets, Rational Expectation and Radner Equilibrium

As mentioned above, the disadvantage of a setup like Arrow-Debreu economy is that too
many markets need to be assumed existing ex ante to fulfill the trading demand for the eco-
nomy, and this is highly unrealistic in real economy. Fortunately, there is another approach
to formulate uncertainty in an abstract economy.

For simplicity, we consider an exchange economy. The basic setup takes the same form
as Arrow-Debreu economy, except there is no production sector and no firm shares for hou-
sehold.

However, instead trading promises in at 1 = 0 in L x S markets, households trade K
assets A, ..., AX in K markets, where 4¥ = (Ak, R A’g) € Ri and whenever /1 has
one unit A* then & will receive a return of A¥ dollars “money” at ¢t = 1 if s reveals. Of
course, here “money” should be represented by some real commodity otherwise it makes no
sense for households to purchase any physical commodities with this “money”, so we set
1 € L for each state s € S to be the numeraire, and hence there are S numeraires. Short
position is allowed, and also assume all assets are perfect divisible, so the portfolio " =
(6. ...,0%) " held by household 4 is a vector in RX, hence Y", 67 A¥ is the total “money”
h receives in s with this portfolio 8”. Further, let 7 = (71, ..., wx) denote the prices for
each asset observed in the K markets, and assume no initial assets for every household,
therefore 7 - 6" < 0, reading as all portfolio should be self financing.

Instead of evaluating any assets, households only evaluate an ex ante determined con-
sumption plan as in an Arrow-Debreu economy. Therefore, no direct way exists to tell us
how a household /2 would choose his portfolio 0". However, we will see how to overcome
this conceptual difficulty after we investigate the procedure in which households choose their
consumption plan.

Assume each household % has its own expectation at ¢ = 0 ex ante about the spot prices
ps = (pis,...,pLs) € Ri \ {0} prevailing at t = 1 for every state s, and as before
commodity 1 is set to be the numeraire. Assume / already has a portfolio 8", so the total
“money” resource is ps-ef +P1s Dk Qli’A’; in state 5. According to these resource constraints,
h chooses a consumption plan x* = (x%, ... ,xg) st ps - xh < poel + pis Y, 9/?‘4]; for
all s. Now observe that households may get a higher utility by adjusting their portfolios,

' Whenever 0,’(’ < 0, it is called a short position and /4 need to pay 0]? A’s‘ dollars to the buyer if s reveals at
t =1
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so after forming their expectation about the spot prices, they maximize utility by choosing
portfolios and consumption plans at the same time.

Summing up, the budget set for household / will take following form,

B'(p,n) = (Gh,xh)eRKxRiSn-@h§0andps-(xf—ef)SplsZG,?Af,VseS ,

k

note the profile of spot prices p = (p1, ..., ps) is of i’s own expectation.

Every household makes the portfolio decision and chooses consumption plan for the next
period, then after a particular state s is revealed at the beginning of second period, L markets
open for the state contingent commodities 1s to Ls, in which all delivery are accomplished.
But a essential problem follows: if the prices for these L commodities don’t coincide with
households’ expectations, how could market clear be satisfied?

The breakthrough in this setup turns out to be a fundamental notion that explains, or in fact
defines how peoples’ expectations will be realized in the second period. This notion is ratio-
nal expectation. By assuming all households have rational expectation, it means not only all
of them have same expectations about spot prices in the future, but also these expected prices
will indeed clear the markets whenever they open in a particular state. This latter characte-
rization for rational expectation is also called self fulfill. Hence, once we impose rational
expectation assumption to the household, an equilibrium concept analogous to competitive
equilibrium could be laid out without any difficulty. Formally, such a equilibrium concept is
called Radner equilibrium.

Definition 6.3. (7, p, (6", x")hen) constitutes a Radner equilibrium in a pure exchange
economy & = (eh, uh)hGH under uncertainty S = (1,...,8) withassets A', ..., AX Ri,
if

e Household maximizing utility,

forallh € H, uh(x") > uh(3h), ¥ (6", 5) € B"(p. 7).

o Asset market clear,

e Commodity market clear,

2on xh = 2on e".
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6.4 Complete Market and Asset Structure

It turns out that asset structure, i.e. complete or incomplete, is a fundamental factor for the
implications of Radner equilibrium. To formalize our discussion, let A = (A1, ..., AX) be
the return matrix of these K assets where AF is treated as a column vector.

Definition 6.4. Let S be the number of states in an economy. Then, the asset structure of
A', ..., AX is said to be complete, if rank(A) = S; and incomplete, if rank(A) < S.

Using a different notation, the asset structure is complete iff span(A4!,..., AX) = RS.
Note also, the maximal number of rank A4 is S, since A4 is an S x K matrix. Also note, with
this notation, the commodity budget constraint can be written as

p1-(xf —el) pu - 0O
: | & o |aen
ps-@h—eh] Lo o pis
where 0" is arranged as a column vector.

Now we consider a special kind of assets. Let A', ..., A5 be S unit vectors'? in R®, and
it is often called Arrow-Debreu security for each one of such kind of assets. Following the-
orem asserts that once assuming such an asset structure (which is obviously complete), then
Radner equilibrium coincides with Arrow-Debreu equilibrium. And in this sense, complete
asset structure and complete market are the two sides of a same coin.

Theorem 6.1. Assume A',..., AS to be S assets in a pure exchange economy & under
uncertainty with weakly monotonic utility, where each A* is a unit vector in RS. Then,
Arrow-Debreu equilibrium (p, (X" pepr) with p > 0 is the same as Radner equilibrium
(7, p, CL xh)hGH) with 7w, p > 0, in the sense that their equilibrium allocations are the

same.

Proof. We divide this proof into two parts.

(i).We show how to construct 7 and (8"),eq such that (m, p, (6%, x*),cqr) constitutes a
Radner equilibrium where p and (x")eg come from an Arrow-Debreu equilibrium.

Let A be an diagonal matrix with pg as its (s,s) element, then A is invertible since
pis > 0. Define w = 1A = (p11,..., p1s), where1 = (1,...,1). Let wy, = (p1 - (x{l —

121.e. A% is a vector of which the s°th component is 1 and all other components are 0.
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e, ... ps- (xg — eg)) be a column vector. Since utility is weakly monotonic, households
will exhaust their resources in an Arrow-Debreu equilibrium, so 1w” = p - (x" —e?) = 0.
And by market clear in Arrow-Debreu equilibrium, Zh wyp = 0. Define 0 = Alwh,
hence commodity budget feasibility are satisfied by definition. And we have ), oh =
A1 doa w" = 0, thus assets market clear is satisfied. Further, 7 - % = 1AAw" =
1w”" = 0, thus portfolio #” meets with the budget feasibility.

We assert (6", x*) maximizes u” (-) on the budget set for Radner equilibrium. Let (éh, iy e
Bh( p, ) be a point in the budget set for Radner equilbrium, then 1A - oh = 7 .9" < 0. Ob-
serve that " < A@", where " = (p1-(Fr—eM),....ps- ()Eg —eg)), hence p- (X" —e?) =
19" < 1A6" < 0. Hence " belongs to the budget set for the Arrow-Debreu equilibrium,
and so there is u” (x") > u”(¥"), which justifies our assertion.

(ii).We show how to construct a price vector p such that (5, x") constitutes an Arrow-
Debreu equilibrium where (7, p, (8", x")pcp) is a Radner equilibrium.

Without loss of generality, we assume p;; = 1, hence A is an identity matrix. Define
p = (m1p1,..., s ps) where ps is viewed as row vector. Using the same notation as in (i),
we have 7 - 0" < 0 and w" < AG" = 0". Hence p - (x" —e?) = 3 mops - (xI —el) =
m-w" < 7-0" <0, so x” meets with the budget feasibility for an Arrow-Debreu equilibrium
with a price vector p. Since market clear is the same between these two equilibrium, only

maximality of x” remains to be shown.

Let ¥ be a point in the budget set for Arrow-Debreu equilibrium, so 7 - 0" = Y T Ps

(fcf —ei‘) =p- (fch —eh) < 0. Define oh = w", so we have 7 - oh = . " < 0. Therefore

(éh, %) is point in the budget set for the Radner equilibrium, hence u” (x") > u”(¥"). 1



Chapter 7

Matching

This chapter tends to be a supplementary review of some results of matching, including
Conway’s theorem, the lattice structure of the set of stable matchings, and the uniqueness of

stable matching. After all, it is highly recommended to read the original paper of Gale and
Shapley (1962).

7.1 Basic notations and results

All through this chapter, we will assume there are finite men and women of equal number. All
people have a strict and complete ranking over the group of opposite gender. A matching,
denoted by u, is a set of pairs in which each person is assigned (only) one partner, and
a stable matching is defined according to Gale and Shapley (1962). For each man m and
woman w, u(m) and u(w) represent m’s and w’s partner respectively.

Furthermore, denote men-proposing procedure by MPP, likewise WPP for women-proposing
procedure. Correspondingly, denote the resulting matchings from MPP and WPP by pyvpp
and pwpp. For each man m, we define Poss(m) as the set of women to whom m gets married
in all stable matchings, likewise, we could define Poss(w) for each woman w.

The following two propositions are due to Gale and Shapley (1962).

Theorem 7.1. Both puypp and jLwpp are stable.
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Theorem 7.2. When MPP is followed, each man m gets his top choice in Poss(m). Analo-
gously, each woman w gets her top choice in Poss(w) when WPP is followed.

Remark 7.1. The first theorem implies that Poss(m) and Poss(w) are not empty for all m and
w.

The next result is a simple implication of the theorem 7.2.

Theorem 7.3. If yumpp = wep, then the stable matching is unique.

Proof. Suppose the converse is true, that there is a stable matching p differing from pypp.
Then, there exists a couple m <> w in u such that m has a different wife w’ in pypp. Note
that w’ is m’s top choice in Poss(m), thus m prefers w’ to w. Likewise, since m is the
husband of w’ in pwep, it follows that w’ must prefer m to her husband in pu, say m’. Now,
look at p again. Among two couples m <> w and m’ <> w’, we have found that m and w’
both prefer each other to their own spouses, hence @ can not be stable, which completes our
proof. 1

7.2 Conway’s Theorem

Let S be the set of all stable matchings. For any two stable matchings i and w’, define an
operation u Vs i’ as follows: For each man m, let m choose among his wives in u and
' the most preferred one. As a result, this operation forms a new set of pairs denoted by
the same notation p and u’. Note this definition doesn’t exclude the possibility of two men
choosing the same woman. Analogously, define an operation p Ay @’ by letting each man
choose his least preferred women among his wives in i and u’. Likewise, we could define
the same kind of operations according to women’s preferences, which we shall denote by
pVw p and p Aw @'

With these notations, we have the following Conway’s theorem.

Theorem 7.4. Let A = vV ' where u, u' € S, then we have

e A is a matching;

e A is a stable matching;
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e cach woman in A gets her least preferred man from u and |'.
Analogous results hold for ANy, Vw, and Aw.

Proof. First, it’s suffice to show that two men will not choose the same woman. Suppose
conversely, there are two men m; and m, both choose the same woman w among their
partners in 1 and u’. Without loss of generality, suppose w is m1’s wife in u and m,’s wife
in i/. In u, we know m, prefers w to his wife in the same matching, so w must prefer m; to
m, otherwise w is unstable. However this leads to a contradiction to the stability of u/, since
now m, prefers w to his wife in this matching, while w prefers m; to her husband m.

Second, suppose A is unstable, then without loss of generality, we could assume there are
two men m; and m, such that m prefers A(m,) to A(my) while A(m,) prefers m; to m,
as well. If both m; < A(m;) and m, <> A(mj) are couples in either u or ', then the
stability in either matching is violated. Together with symmetry, it implies that we only need
to consider the case that A(m;) = u(my) and A(my) = u'(my). In w', we have A(my)
prefers m to m,, on the one hand; and since A(m) is the preferred one among p(m,) and
u'(myp) by my, we have m prefers A(my) to u'(my), on the other hand. This leads to a
contradiction to the stability of . Hence A must be stable.

Third, suppose conversely that there is a woman w who gets her most preferred man m
from p and p'. By symmetry, we can assume m = p(w). Then in p/, we have m’ <
w and m <> p'(m), where w prefers m, and m prefers w also by the definition of A. This
contradiction completes our proof. 1

Remark 7.2. It can be easily verified that V3 = Aw and Ay = Vy, where the equalities
hold in the sense that the operations on both sides result in the same matching.

7.3 Lattice Structure of S

A finite lattice is a finite set X over which a partial order - is defined such that for any two
elements x, y € X there exist w and z in X which satisfy

z 7 x,yandifthereisz' € X s.t. 2/ 7= x, y, then 7’ = z;

x,y = wand if thereis w’ € X s.t. x,y =~ w’, thenw - w'.
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In addition, z is called the minimal upper-bound of {x,y}, and w is called the maximal
lower-bound of {x, y}. Given a finite lattice, it is obvious that there exists a maximal element
X € X such that x —~ x for all x € X likewise, there exists a minimal element x € X.
Therefore, if x = x, we conclude that X is a singleton.

Turn to S, the set of all stable matchings. Evidently, given u, u' € S, u vy (' and
1 Ay ' are the minimal upper-bound and maximal lower-bound of p and p’ respectively,

according to the partial ordering defined by men’s preferences.!

Moreover, it is easy to
verify that pypp and pwpp are the maximal and minimal element of S respectively according
to men’s preference. Hence S is a finite lattice. Similarly, we can use women’s preference

to define a partial ordering under which S is also a finite lattice.

Employing the fact that S is a finite lattice under men’s preference, it follows that if
Umpp = Mwpp, then there is a unique stable matching. This gives an alternative proof for
theorem 7.3.

'More precisely, for two stable matchings p and p/, o - ' is defined as if each man in y is no worse of
than in u according his preference.
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