2022 秋季本科时间序列 第1次作业

提交日期: 9月12日

- 1. 请解答课件 2 第 8、14、17 页的练习。
- 2. 对 Poisson 分布,请证明 $\sum_{i=0}^{\infty} \mathbb{P}(X=i) = 1$ 。
- 3. 对二项分布 $\mathbb{P}(X = i) = \binom{n}{i} p^i (1 p)^{n-i}$, i = 0, 1, ..., n, 令 $\lambda = np$ 为正常数。请计算 $\lim_{n \to \infty} \mathbb{P}(X = i)$,从而说明当 n 充分大而 p 较小时,二项分布的概率可由 Poisson 分布 近似。
- 4. 给定 \mathbb{R} 上的一个函数 $g(\cdot)$,若对任意的 x < y 以及 $\alpha \in (0,1)$,均有 $g(\alpha x + (1-\alpha)y) \le \alpha g(x) + (1-\alpha)g(y)$,则称 g 为凸函数;若前式不等号为严格小于号,则称 g 为严格凸函数。

给定取值为 \mathbb{R} 的随机变量 X,以及一个凸函数 $g(\cdot)$,请证明 $\mathbb{E}[g(X)] \geq g(\mathbb{E}[X])$,且若 $g(\cdot)$ 严格凸,则 $\mathbb{E}[g(X)] > g(\mathbb{E}[X])$ 。此结论即 Jensen 不等式。

提示: 借助凸函数的几何性质,首先说明可以找到一个常数 k,使得 $\forall x \in \mathbb{R}$,有 $g(x) \ge g(\mathbb{E}[X]) + k(x - \mathbb{E}[X])$ 。

5. 利用 4, 证明 $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$