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Abstract

We propose a simple and theory based method to discretize the Markov regime switch-

ing AR(1) process into a first order Markov chain. The method is based on closed form

expressions of the regime conditional first and second moments of the process, in conjunc-

tion with the Rouwenhorst method for constructing a proper state space and transition

matrix. The resulting discrete Markov chain exactly replicates the regime conditional

and unconditional means and variances, and the regime conditional autocorrelations, of

the original process. The benchmark method is subject to a bias in the unconditional au-

tocorrelation approximation; however, simulation results show that the magnitude of the

bias is small. At a cost of compromising regime conditional autocorrelations accuracy,

two modifications of the benchmark method with respect to construction of the tran-

sition matrix may improve the unconditional autocorrelation approximation with other

moments unaffected, especially when the original process is persistent unconditionally.

Key words: Discretization, Markov regime switching process.
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I Introduction

A most widely used approach in solving recursive models in economics is the discrete approxi-

mation of the original dynamic programming problems. This approach requires discretization

of the state space of the original model, which can be continuous in both endogenous state

variables and exogenous shock variables. It is typical to model a shock process as a Markov

process, especially an AR(1) process. Since AR(1) processes are easy to estimate and provide

a simple way of capturing persistent effect of shocks, it is no surprise that such a choice
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becomes predominant in applications of recursive methods. Correspondingly, a host of dis-

cretization methods for an AR(1) process is available in the literature, with famous ones such

as Tauchen (1986), Tauchen and Hussey (1991), Deaton (1991), and Rouwenhorst (1995).1 In

particular, Rouwenhorst’s method provides an almost complete solution to the discretization

problem of an AR(1) process, in the sense that it delivers exact replications of the most con-

cerned first and second moments, both conditional and unconditional, of the AR(1) process

under consideration.

However, most of the seminal discretization methods deals only with the AR(1) process,

with a few extensions to the discretization of VAR processes at most. Such a situation poses

an obstacle for researchers attempting to model the shock process with an alternative Markov

process other than the AR(1) process. One such case occurs in the field of macroeconomics.

Ever since the seminal work of Hamilton (1989), the use of the autoregressive models with

Markov regime switching coefficients is pervasive, in both empirical and theoretical works; see

Hamilton (2015) for an up-to-date survey. Despite its widely use in many areas in macroeco-

nomics, there is by far no theory-based method for the discretization of such a process, which

we believe have became an restriction of using the otherwise important process in formulating

and solving recursive dynamic models.2

In this paper, we propose a theory-based method to discretize a Markov regime switching

AR(1) process, henceforth MRS AR(1). The method is based on an analytical characteriza-

tion of the conditional moments of the MRS AR(1) process. In particular, we give closed form

expressions for the regime-conditional mean, variance, and autocorrelation of the MRS AR(1)

process. Based on thse regime-conditional moments, we modify the Rouwenhorst method to

construct an appropriate discrete Markov chain which exactly replicate these moments. The

method ensure the local dynamic properties, as captured by the conditional moments, of the

MRS AR(1) process to be approximated accurately. In addition, we show that the discretiza-

tion also replicates the unconditional mean and variance of the MRS AR(1) process, while

the unconditional autocorrelation differs in general. The latter property is a natural outcome

of preserving the local dynamics of the MRS AR(1) process, and further numerical exam-

ples illustrate the bias in the unconditional autocorrelation to be small. Taking together,

the paper provides the first and an easy-to-implement discretization method for the popular

Markov regime switching AR(1) process.

1Deaton’s method is made widely known by the textbook of Adda and Cooper (2003). More recent works on

this topic include Flodén (2008), Kopecky and Suen (2010), Galindev and Lkhagvasuren (2010), Gospodinov

and Lkhagvasuren (2014), Tanaka and Toda (2013, 2015), and Farmer and Toda (2017).
2Bai and Zhang (2010) is one of a few quantitative works modeling a shock process with a fully specified

AR(1) Markov regime switching process. However, they discretize the process in an ad hoc way. Storeslet-

ten, Telmer, and Yaron (2004) is another example of incorporating Markov regime switching process into

quantitative works, yet they only consider regime switching in the variance of the innovation, and thus the

discretization difficulty is non-essential.
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The paper proceeds as follows. Section 2 introduce the basic setup. Section 3.1 provides

the closed form expressions for various moments of the MRS AR(1) process; section 3.2 shows

how to modify the Rouwenhorst for the purpose of our discretization; section 3.3 describes the

discretization method; section 3.4 discusses the properties of the discretized Markov chain;

section 3.5 devotes to further discussion on the bias in the unconditional autocorrelation.

Section 4 contains several numerical examples.

II Basic Setup

Consider the following simple model of an AR(1) process with regime switching

Xt = (1− ρ(St))µ(St) + ρ(St)Xt−1 + σ(St)εt, (1)

where regime St follows a Markov chain with state space S ≡ {1, . . . ,K}, and ρ(·), µ(·)
and σ(·) are functions of St. We assume that εt

iid∼ N(0, 1) and the Markov chain {St} is

homogeneous and ergodic.3 It follows that the range X of Xt, i.e., the state space, is the

entire real line R. One crucial assumption for tractability, as stressed in Hamilton (1990,

p. 43), is that St be independent of Xt−1 when conditioning on St−1. For the investigation of

the discretization method in the next section, the assumption of εt having normal distribution

can be relaxed to: (i) εt is iid with zero mean and unit variance; (ii) has strictly positive

density over its support; and (iii) induces conditional independence between St and Xt−1.

No result is affected by the specific distributional assumption on εt.

Note that for the degenerate case in which Sτ ≡ k ∈ S, ∀τ ∈ Z, Xt is a standard

AR(1) process, hence a Markov chain with state space X . However, given St follows a

Markov chain, there exists no simple expression of the distribution of Xt conditional on Xt−1

alone. Nonetheless, it is possible to derive the joint transition kernel for (Xt, St), upon which

probabilistic properties of Xt can be investigated. To begin with, we use a succinct notation

p(·) to denote both the density and probability of a continuous and discrete distribution

respectively. In this way, first note that the autoregressive equation (1) implies the following

conditional distribution of Xt on Xt−1 and St:

Xt|(Xt−1, St) ∼ N((1− ρ(St))µ(St) + ρ(St)Xt−1, σ
2(St)),

which leads to an analytic expression

p(Xt = y|Xt−1 = x, St = ℓ) = f(y, x, ℓ)

≡ 1√
2πσ(ℓ)

exp

(
−
(
y −

(
1− ρ(ℓ)

)
µ(ℓ)− ρ(ℓ)x

)2
2σ2(ℓ)

)
,

3In general, we call a Markov chain to be ergodic if it is irreducible, aperiodic and positive recurrent;

cf. Meyn and Tweedie (2009, ch. 13) for terminology. We note in passing that when a chain is finite, then

irreducibility implies recurrence, hence positive recurrence.
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Second, let pkℓ ≡ p(St = ℓ|St−1 = k), 1 ≤ ℓ, k ≤ K, denote the regime transition

probabilities, and correspondingly P ≡ [pkℓ] the transition matrix. It is then straightforward

to show that

p(Xt = y, St = ℓ|Xt−1 = x, St−1 = k)

= p(Xt = y|Xt−1 = x, St = ℓ, St−1 = k)p(St = ℓ|Xt−1 = x, St−1 = k)

= p(Xt = y|Xt−1 = x, St = ℓ)p(St = ℓ|St−1 = k)

= f(y, x, ℓ)pkℓ, (2)

which can be easily verified as a Markov transition kernel defined over the product state space

X ×S. It is worth to remind that the derivation rests on two facts: (i) the distribution of Xt

does not dependent on St−1 when conditioning on Xt−1 and St and (ii) St is independent of

Xt−1 conditional on St−1.

By ergodicity, St has a unique invariant distribution π = (π1, . . . , πK) and πk > 0 for all

k.4 Given that εt ∼ N(0, 1) and St is ergodic, the transition kernel defined in (2) guarantees

that the joint process (Xt, St) is ergodic as well. This fact follows directly from the results

of Yao and Attali (2000, thm. 1), which deals with a general nonlinear MRS autoregressive

processes. To be more specific, Yao and Attali (2000) identify three conditions for the er-

godicity of (Xt, St): (i) a moment condition on εt, i.e., E|εt|m < ∞ for some m > 0; (ii)

a stability condition on ρ(·), i.e.,
∑

k πk log |ρ(k)| < 0;5 and (iii) an irreducibility condition.

The moment condition is clearly satisfied in our setup, and we shall assume the stability

condition holds throughout the paper. Note that the stability condition allows |ρ(ℓ)| > 1 for

some ℓ, as long as the mean of log |ρ(k)| is negative. For the third condition, irreducibility

of St and strict positivity of the density of εt guarantee φ-irreducibility of (Xt, St) where φ

is the product measure over X × S (i.e., counting ⊗ Lebesgue). The ergodicity of the joint

Markov chain {(Xt, St)} implies a unique invariant distribution ν(·, ·) over X × S.
In what follows, we shall assume (Xt, St) starts from ν, and all moments related to Xt

are taken under ν, denoted by Eν . Meanwhile, we also use Eπ whenever it is desirable to

indicate the expectation being taken for St under π. It is worth to stress that {Xt} alone is

4Under the stated assumptions, St admits a unique invariant distribution, which is also the marginal

distribution of ν on St. To be precise, the main results derived in the paper only require the existence of

one invariant distribution of St that is strictly positive for all regimes. This condition in turn is equivalent

to (positive) recurrence of St; see Timmermann (2000) and Yang (2000) for related works under similar

conditions. Instead, working under the ergodic assumption allows us to be more precise on the probabilistic

properties of Xt and its approximation. In addition, ergodic chains of St prevail in econometric analyses of

MRS processes, either as assumptions or estimation results.
5It is understood that if ρ(k) = 0 for some k, then log ρ(k) = −∞ and E log ρ(St) = −∞ as π(k) > 0. The

sufficiency of the specific stability condition dates back to Brandt (1986), and Bougerol and Picard (1992)

establish the converse for case where St is iid.
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not Markovian, despite that {(Xt, St)} constitutes a Markov chain jointly.6

III Discretization

We now describe how to approximate the joint process {(Xt, St)} by a finite Markov chain.

Since the regimes are already discrete, the basic idea is to find a set of discrete state space

Z(k) = {zi(k)} for each regime k, and then compute the associated transition probability

both within and cross regimes given Z = ∪kZ(k). The result out of these two steps is a finite

Markov chain {Zt} with state space Z and transition matrix Q. The target is not only to

have (Z,Q) approximate well the stationary properties of Xt, but perhaps even more so to

ensure the conditional dynamics of Xt given St is captured by (Z,Q). Thus, it is important

to account for the difference among the regime conditional distributions in both choosing

Z(k) and computing Q.

From both the practical and theoretical perspective, it is convenient, and very often

sufficient, to capture the main properties of conditional distributions through the first and

second moments (including the autocorrelations). In what follows, we first present closed form

formulas for the first two moments of Xt, conditional on each regime St. Then we utilize the

conditional moments to determine state space Z and transition matrix Q, through a slightly

generalized Rouwenhorst method.

III.A Moment Formula

To begin with, we first present closed form expressions for the regime conditional mean

Eν [Xt|St] and variance var(Xt|St).7 Let Eν [Xt|S] and Eν [X2
t |S] denote the column vectors of

Eν [Xt|St = k] and Eν [X2
t |St = k] for k = 1, . . . , S respectively, then we have:

E
ν [Xt|S] = diag−1(π)

(
πdiag(µ)diag(ι− ρ)

(
I − Pdiag(ρ)

)−1
)′
,

E
ν
(
X2

t

∣∣St = S
)
= diag−1(π)

(
πdiag

(
σ2
)(
I − Pdiag

(
ρ2
))−1

+ πdiag
(
µ2
)
diag

(
(ι− ρ)2

)(
I − Pdiag

(
ρ2
))−1

+ 2πdiag(µ)diag(ι− ρ)
(
I − Pdiag(ρ)

)−1
Pdiag(ρ)

· diag(µ)diag(ι− ρ)
(
I − Pdiag

(
ρ2
))−1

)′
.

In the above expressions, we adopt the following notation definition: for any vector a =

[a1, . . . , aK ], diag(a) denotes the diagonal matrix where the i’th diagonal element is ai, a
2

denotes [a21, . . . , a
2
K ], and ι = [1, . . . , 1]. Accordingly, we have closed form expression for the

conditional variance var(Xt|St = k) = Eν [X2
t |St = k]− Eν [Xt|St = k]2.

6Indeed, Francq and Zaköıan (2001) and Zhang and Stine (2001) prove that, up to the covariance structure

alone and ignoring higher order moments, Xt has an ARMA(p, q) representation, where p, q ≥ K − 1 depends

on the number of regimes K. In particular, whenever K ≥ 3, p, q ≥ 2, so that Xt is necessarily not first-order

Markovian, as Xt−2 affects the firs two moments of Xt.
7See Liu (2015) for the relevant derivations.
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In addition, in the benchmark method, we use the regime conditional autocorrelation

to capture the local dynamic property of Xt. In specific, conditioning on two consecutive

regimes (St+1, St), the conditional first order autocorrelation

ϕ(St+1, St) =
cov(Xt+1Xt|St+1, St)√

var(Xt+1|St+1, St)var(Xt|St+1, St)

characterizes the persistence of Xt across the given regimes. To calculate the related condi-

tional moment, we note that all coefficients of the AR(1) equation (1) become constant once

conditioning on St+1, hence the randomness of Xt+1 only comes from Xt and εt+1. As a

result, it is straightforward to derive

cov(Xt+1, Xt|St+1, St) = ρ(St+1)var(Xt|St), (3)

var(Xt+1|St+1, St) = ρ2(St+1)var(Xt|St) + σ2(St+1), (4)

where we have used the fact that St+1 and Xt are independent conditional on St, which also

implies var(Xt|St+1, St) = var(Xt|St). As a result, the conditional autocorrelation can be

written as

ϕ(St+1, St) =
ρ(St+1)√

ρ2(St+1) + σ2(St+1)/var(Xt|St)
. (5)

III.B The Rouwenhorst Method

We rely heavily on the discretization method developed first by Rouwenhorst (1995) (hence-

forth Rouwenhorst method) for constant coefficient AR(1) process. Rouwenhorst method

has regained considerable attention in the recent literature on Markov process discretization,

and Kopecky and Suen (2010) provide a comprehensive examination of analytical properties

of the method. The main advantage of Rouwenhorst method is the exact replication of the

variance and auto-covariance, thus autocorrelation, of the candidate AR(1) process.8

The original Rouwenhorst method is designed for a setup of Markov chain. To serve our

purpose, we show below that the key properties of the constructs can be extended to a setting

of two continuously valued random variables W and Y , with any finite means and variances,

and an arbitrary correlation coefficient ϕ. Now, suppose we want to find two discrete random

variables W ∗ and Y ∗, so as to replicate respectively the mean and variance of W and Y ,

while jointly match the correlation coefficient ϕ. Equivalently, this requires us to figure out

a proper state space of each variable and a proper joint distribution of the two. We now

demonstrate how to adapt Rouwenhorst method to this setting.

8This makes it possible for an accurate discretization of highly persistent AR(1) shock process, e.g., with

an autocorrelation of 0.99, a parameter region which is repeatedly encountered in calibration exercises while

standard methods such as Tauchen (1986) perform poorly. Kopecky and Suen (2010) show that Rouwenhorst

method also replicate the conditional mean and variance exactly for AR(1) process, which turns out to be the

source of inaccuracy for standard methods.
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Let us first fix the number of discrete values W ∗ and Y ∗ to be the same N ≥ 2. Denote

µW and µY the means, and σW and σY the variances, of W and Y . Following Rouwenhorst

method, we choose the N values {w1, . . . , wN} of W ∗ to be equally spaced between µW −
σW

√
N − 1 and µW +σW

√
N − 1, and choose {y1, . . . , yN} in exactly the same way. Next, we

choose the marginal distribution of W ∗ to be binomial, i.e., Pr(W ∗ = wi) = 2−(N−1)
(
N−1
i−1

)
=

2−(N−1) (N−1)!
(i−1)!(N−i)! , and the conditional distribution of Y ∗ to be Pr(Y ∗ = yj |W ∗ = wi) = λij ,

where λij is the (i, j)’th element of a matrix Λ. The key ingredient of Rouwenhorst method

is the recursive construction of Λ:

1. Denote ψ = (ϕ+ 1)/2. For n = 2, let

Λ2 =

[
ψ 1− ψ

1− ψ ψ

]
.

2. Given Λn−1, first construct

Λ̂n = ψ

[
Λn−1 0

0′ 0

]
+ (1− ψ)

[
0 Λn−1

0 0′

]

+ (1− ψ)

[
0′ 0

Λn−1 0

]
+ ψ

[
0 0′

0 Λn−1

]
,

where 0 is a column vector of zeros, then divide all except the first and last row of Λ̂n

by 2, and the resulting matrix is Λn.

3. Repeat the last step until n = N and Λ = ΛN .

Rouwenhorst (1995) points out thatΛ is a Markov transition matrix, thus each row indeed

gives rise to a conditional distribution. Moreover, the binomial distribution
{
2−(N−1)

(
N−1
i−1

)}
constitutes the unique ergodic distribution of Λ, therefore the marginal distribution of Y ∗ is

the same binomial as Pr(Y ∗ = yi) = 2−(N−1)
(
N−1
i−1

)
. It is then not difficult to demonstrate

that the above constructions satisfy EW ∗ = µW , EY ∗ = µY , varW
∗ = σ2W , varY ∗ = σ2Y , and

cov(W ∗, Y ∗) = ϕσWσY . It is worth to stress that these properties are independent on the

number of states N chosen at the beginning.

Rouwenhorst’s original paper dose not contain formal proofs on these facts; see Kopecky

and Suen (2010) for formal proofs in the setting of a Markov chain,9 which can be identified

with the condition of µW = µY and σW = σY in the current more general setting. All the

proofs directly apply to our setting because (i) the state spaces of W ∗ and Y ∗ differ only by

a scaling factor after removing the means and (ii) the marginal distributions are the same.

9Especially the appendix of their working paper version.
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III.C Discretizing the MRS Process

We are now ready to construct the discrete state space Z and the transition matrix Q. Let

N ≥ 2 be the fixed number of states chosen for all regimes, so that there are NK states in

total for the approximating Markov chain. For each regime k, let Z(k) = {z1(k), . . . , zN (k)}
be N points equally spaced from Eν(Xt|St = k) −

√
var(Xt|St = k)(N − 1) to Eν(Xt|St =

k) +
√
var(Xt|St = k)(N − 1).

Let Qkℓ denote an N×N matrix and be the (k, ℓ)’th square block of Q, with 1 ≤ k, ℓ ≤ K.

Each Qkℓ equals to pkℓΛN (ϕ(k, ℓ)), where pkℓ is the transition probability from regime k to

ℓ, ΛN (ϕ(k, ℓ)) is the Rouwenhorst transition matrix with a correlation of ϕ(k, ℓ), and lastly

ϕ(k, ℓ) denotes the conditional autocorrelation ϕ(St+1, St) with St = k and St+1 = ℓ. It is

readily verifiable that the so constructed Q is indeed a Markov transition matrix, and its

unique invariant distribution η has a simple structure. Let

ξ =

[
2−(N−1)

(
N − 1

1− 1

)
· · · 2−(N−1)

(
N − 1

N − 1

)]
denote the vector of N binomial probabilities, and recall π is the invariant distribution of P .

Straightforward calculation then shows that the following row vector

η = π ⊗ ξ = (π1, . . . , πK)⊗ (ξ1, . . . , ξN )

satisfies η = ηQ, thus η is the unique invariant distribution of Q. We shall use Eη to denote

the expectation of Zt under η.

III.D Properties of the Discretization

By construction, the discrete Markov chain (Z,Q) exactly replicates the conditional mean

and variance of Xt on each regime, i.e., Eν(Xt|St) = Eη(Zt|St) and var(Xt|St) = var(Zt|St),
where conditional moments such as Eη(Zt|St = k) refer to Zt taking values in Z(k) under the

marginal distribution derived from ξ. It follows directly that the chain also replicates the

unconditional mean, as

E
νXt = E

π
E
ν(Xt|St) = E

π
E
η(Zt|St) = E

ηZt.

A less straightforward fact is that the chain also replicates the unconditional variance of

Xt. To show this, note that varY = EY 2−(EY )2 for any random variable Y and EνXt = EηZt,

therefore we only need to verify EνX2
t = EηZ2

t . The last equality can be established as follows:

E
νX2

t = E
π
E
ν(X2

t |St) = E
π
(
var(Xt|St) + [Eν(Xt|St)]2

)
= E

π
(
var(Zt|St) + [Eη(Zt|St)]2

)
= E

π
E
η(Z2

t |St) = E
ηZ2

t .
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It is worth to stress that the unconditional variance varXt does not equal to the average of

the conditional variance var(Xt|St) weighted by π, and consequently one can not conclude

varZt = varXt simply from the fact that var(Zt|St) = var(Xt|St).10

The case for unconditional auto-correlations is more involved. As unconditional variance,

identical autocorrelations of Xt and Zt conditional on consecutive regimes (St+1, St) do not

imply identical unconditional autocorrelations. Actually, we shall demonstrate in a moment

that the unconditional autocorrelation ρX and ρZ do not equal with each other in general.

Since var(Xt) = var(Zt) and the autocorrelation equals to the autocovariance divided

by the variance, it suffices to consider the autocovariance of Xt and Zt. Moreover, since

EνXt = EηZt, cov(Xt+1, Xt) = EνXt+1Xt − [EνXt]
2 under the invariance distribution, and

cov(Zt+1, Zt) = EηZt+1Zt − [EηZt]
2 analogously, we only need to compare EνXt+1Xt and

EηZt+1Zt. In turn, these two unconditional moments are related via the conditional moments.

To spell out the detail, first note that

E
νXt+1Xt = E

π
E
ν(Xt+1Xt|St+1, St)

= E
π[cov(Xt+1Xt|St+1, St) + E

ν(Xt+1|St+1, St)E
ν(Xt|St+1, St)]

= E
π[cov(Xt+1Xt|St+1, St) + E

ν(Xt+1|St+1, St)E
ν(Xt|St)].

Next, recall that {Zt} is constructed so that

cov(Zt+1, Zt|St+1, St) = ϕ(St+1, St)
√

var(Zt|St+1, St)var(Zt+1|St+1, St),

and since var(Zt|St+1, St) = var(Zt|St), var(Zt+1|St+1, St) = var(Zt+1|St+1), it follows that

cov(Zt+1, Zt|St+1, St) = ϕ(St+1, St)
√
var(Zt|St)var(Zt+1|St+1).

Employing the definition of ϕ(St+1, St) in (3)–(5) and the fact that var(Zt|St) = var(Xt|St),
we can write the last expression as

cov(Zt+1, Zt|St+1, St) =
cov(Xt+1, Xt|St+1, St)√

var(Xt+1|St+1, St)/var(Xt+1|St+1)
.

To simplify notation, let

χ(St+1, St) ≡
√

var(Xt+1|St+1, St)/var(Xt+1|St+1),

10Jensen’s inequality implies that E
ν [Eν(Xt|St)]

2 > [Eν
E
ν(Xt|St)]

2 = [EνXt]
2, therefore var(Xt) = E

νX2
t −

[EνXt]
2 > E

ν
E
ν(X2

t |St)− E
ν [Eν(Xt|St)]

2 = E
ν [var(Xt|St)], despite E

νX2
t = E

ν
E
ν(X2

t |St).
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so that cov(Xt+1, Xt|St+1, St) = χ(St+1, St)cov(Zt+1, Zt|St+1, St). As a result,

E
νXt+1Xt = E

π[cov(Xt+1Xt|St+1, St) + E
ν(Xt+1|St+1, St)E

ν(Xt|St)]

= E
π[χ(St+1, St)cov(Zt+1, Zt|St+1, St) + E

ν(Xt+1|St+1, St)E
ν(Xt|St)]

= E
πχ(St+1, St)[cov(Zt+1, Zt|St+1, St) + E

η(Zt|St)Eη(Zt+1|St+1)]

+ E
π[Eν(Xt+1|St+1, St)E

ν(Xt|St)− χ(St+1, St)E
η(Zt+1|St+1)E

η(Zt|St)]

= E
πχ(St+1, St)E

η(Zt+1Zt|St+1, St)

+ E
π[Eν(Xt+1|St+1, St)− χ(St+1, St)E

ν(Xt+1|St+1)]E
ν(Xt|St). (6)

Since Eν(Xt+1|St+1, St) = (1− ρ(St+1))µ(St+1) + ρ(St+1)E
ν(Xt|St),

E
ν(Xt+1|St+1, St)− χ(St+1, St)E

ν(Xt+1|St+1) ̸= 0

in general. Recall that EηZt+1Zt = EπEη(Zt+1Zt|St+1, St), it is thus evident from (6) that

EνXt+1Xt ̸= EηZt+1Zt in general as well. To illustrate, consider a particular case with

µ(·) ≡ 0, so that EνXt = EηZt = 0, hence EνXt+1Xt = Eπχ(St+1, St)E
η(Zt+1Zt|St+1, St).

Observe that χ(St+1, St) is generically correlated with Eη(Zt+1Zt|St+1, St), thus only under

rather special circumstances will EνXt+1Xt = EηZt+1Zt hold.

III.E Further Discussion

A careful check of the derivation of (6) reveals the reasons underlying the disparity between

EνXt+1Xt and EηZt+1Zt. The first reason lies in the fact that χ(St+1, St) ̸= 1 in general, or

more precisely, the conditional variance of Xt

var(Xt+1|St+1, St) = ρ2(St+1)var(Xt|St) + σ2(St+1)

differs from var(Zt+1|St+1, St) = var(Zt+1|St+1), which then equals to var(Xt+1|St+1). The

second reason is similar to the first one in that

E
ν(Xt+1|St+1, St) = (1− ρ(St+1))µ(St+1) + ρ(St+1)E

π(Xt|St)

differs from Eη(Zt+1|St+1, St) = Eη(Zt+1|St+1) = Eν(Xt+1|St+1). Both facts points to the

nature of the problem: the distribution of Xt+1 conditional St+1 is affected by St (indeed, on

St−j for all j ≥ 0), or alternatively, past regimes always contain useful information regarding

current Xt; in contrast, distribution of Zt+1 conditional on St+1 is fixed by construction

irrespective of any past regime St−j , j ≥ 0.

The latter property is present whenever the state space chosen for the discretization

targets only the conditional distribution of Xt on current regime St only, so that the impact

of past regimes disappears, while an essential feature of the MRS autoregressive process is

the influence of the entire history of regimes on current observation. To what extent such a

deficiency will jeopardize the performance of the discretized Markov chain ultimately depends
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on the specific setting where discretization is required. Nonetheless, it seems justifiable to

us to first target local properties, i.e., regime specific, of the MRS process in question, as

the very advantage of an MRS model is to provide a simple yet flexible setup for capturing

heterogeneous local dynamics observed in time series data.

Notwithstanding this essential feature of the discretization procedure, we can still modified

the construction of the transition matrix so that {Zt} perfectly replicates the unconditional

mean, variance and autocorrelation in together with conditional mean and variance of Xt

on each regime. To this end, we only need to modify the transition matrix so that Qkℓ =

pkℓΛN

(
ϕ̄(k, ℓ)

)
for 1 ≤ k, ℓ ≤ N , where

ϕ̄(St+1, St) =
cov(Xt, Xt+1|St+1, St) + [Eν(Xt+1|St+1, St)− Eν(Xt+1|St+1)]E

ν(Xt|St)√
var(Xt|St)var(Xt+1|St+1)

, (7)

with St = k, St+1 = ℓ. With Z unchanged and the binomial distribution ξ remaining the

conditional distribution of Zt, it follows that both the conditional and unconditional mean

and variance of Zt stay the same, hence equal to those of Xt. An analogous derivation as

in (6) shows that EνXt+1Xt = EηZt+1Zt, thus the unconditional autocorrelations of Xt and

Zt are the same. However, the drawback of (7) is that ϕ̄(St+1, St) needs not to be less than

unity in absolute value, which renders the possibility of negative entries in the transition

matrix based on ϕ̄(St+1, St). As a result, matching the unconditional autocorrelation by such

a method may not be feasible. This is an important caveat to keep in mind in any practical

exercise.

IV Numerical Examples
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