金融中介理论

第三讲: 金融中介与流动性创造

授课人:刘岩武汉大学全融系

Content

- History of bank runs and bank panics
- Background: model of liquidity of insurance
- Instability and remedies
- Disciplinary role of bank runs
- Efficient bank runs: reconstruction
- Extension: interbank markets
- Systemic risk and contagion

History of bank runs and bank panics

- Bank runs vs. Bank panics?
 - **Entity to be affected**
 - Bank runs: one individual bank
 - Bank panics: whole banking market
- In U.S. history, bank panics are rather common
 - □ 1890-1908: 21 bank panics
 - □ 1929-1933: 5 bank panics
 - Foundation of the Fed

Why studying bank panics matters?

- From macroeconomics perspective:
 - GNP growth : 3.75 % to 6.82%
 - Liquidity shortage
 - □ Interference to monetary policy
- From individual perspective
 - □ Bankruptcy: prisoner's dilemma
 - Loss of confidence in government

Background: Model of Liquidity Insurance

- One homogenous good
- Three dates: t = 0, 1, 2
- A continuum of *ex ante* identical agents
 i.i.d. liquidity shocks: patient (π₁) or impatient (π₂)
- Maximize expected utility:

 $U = \pi_1 u(\mathcal{C}_1) + \pi_2 u(\mathcal{C}_2)$

Background: Model of Liquidity Insurance

- Illiquid storage technology
 - $\square R > 1: return at t = 2$
 - $\Box \quad l < 1: \text{ return at } t = 1$

Optimal allocation problem: $\max U = \pi_1 u(C_1) + \pi_2 u(C_2)$ s.t. $\pi_1 C_1 = 1 - I$ $\pi_2 C_2 = RI$

F.O.C:

$$-u'(C_1^*) + Ru'(C_2^*) = 0$$

- Market solution: $C_1 = 1, C_2 = R, I = \pi_2, p = 1/R$
 - Not optimal
 - □ Asymmetric information

Fractional Reserve Banking System

- Contract with optimal withdrawal (C₁^{*}, C₂^{*})
 C₁^{*}: if impatient
 C₂^{*}: if patient
- Amount of liquidity at t = 1: $1 I = \pi_1 C_1^*$
- Amount of liquidity at t = 2: $RI = \pi_2 C_2^*$
- Banks: solvent with probability 1
 Intuition: eliminate asymmetric information by pooling
- Wait. Something is missing. What?

Another Scenario

- What if patients expect other patients to be impatient?
 - Banks: forced to liquidate its investment
 - **D** Total asset at $t = 1: \pi_1 C_1^* + (1 \pi_1 C_1^*) l < C_1^*$
 - Bank runs happen: all depositors withdraw

Stability in realization of the first equilibrium is yearned for!

Instability: Early Withdrawal

- Reason 1: higher outside return
 C₂^{*}/C₁^{*} 1 < r
- Reason 2: multiple equilibrium
 - □ Speculation about others' action
 - □ Institutional arrangements: needed to rule out the
 - inefficient equilibrium

Case 1: repayment to all depositors using liquidity $C_1 \le 1 - I, C_2 \le RI$

Dominated by autarky

- Case 2: liquidity fulfilled by liquidation $C_1 \le (1 - I) + lI, C_2 \le RI + 1 - I$
 - Reduced to autarky
- Case 3: securitization of its long run technology
 Same as market solution

Remedy No.2: Regulatory Responses

- Case 1: Suspension of Convertibility
 - Banks: not serve more than withdrawal $\pi_1 C_1^*$
 - □ Above the threshold: suspended convertibility
 - Kind of ideal and illegal
- Case 2: Insured depositors
 - Repayment guaranteed by another intuition

Remedy No.3: Equity Financed Banks

- A dividend *d*: announced to be distributed at t = 1
 - Amount of *d*: determined ex ante at t = 0
 - □ Reserves of *d* and investment (1 d)
- Shares of bank
 - □ Traded during period 1 (time point matters!)
 - □ One share: ensures a right to consumption R(1 d)
 - Equilibrium price *p*: depends on *d*

Remedy No.3: Equity Financed Banks (Cont.)

- Take *d* and *p* as given
- Impatient agents: sell shares and consume at t = 1
 C₁ = d + p
- Patient agents: wait at t = 1 and consume at t = 2 $C_2 = \left(1 + \frac{d}{p}\right)R(1 - d)$
- Price determined through stock market clearing

$$\square \ \pi_1 = \pi_2 \frac{d}{p} \Rightarrow p = \frac{\pi_2 d}{\pi_1}$$

Remedy No.3: Equity Financed Banks (Cont.)

The equilibrium price yields

$$C_1 = \frac{d}{\pi_1}, C_2 = \frac{R(1-d)}{\pi_2}$$

This is equivalent to

$$\pi_1 C_1 + \pi_2 \frac{C_2}{R} = 1$$

Remedy No.3: Equity Financed Banks (Cont.)

- Reduced to optimal allocation
- Variability in *d*
 - More freedom in term structure
 - □ Room for Pareto improvement to market economy

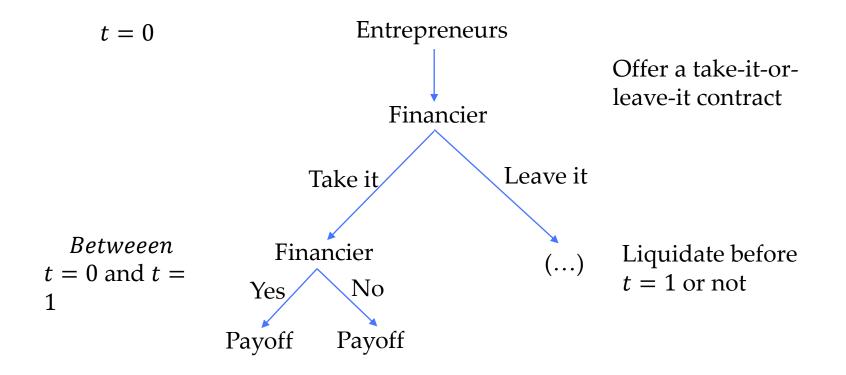
Disciplinary Role of Bank Runs

- Renegotiation: trigger bank runs potentially
- Bargaining power of banks: limited
- Lead to higher level of financing

Simple Model: Renegotiation Proof

- Opportunity cost: 1 for excess of savings
- Entrepreneurs: project but no cash
- Two periods: t = 1, 2
- Financiers: cash but no project

Simple Model: Renegotiation Proof (Cont.)


- Project:
 - $\Box Iy \text{ invested at } t = 0$
 - $\Box \text{ risk free } y \text{ earned at } t = 0$
- Liquidation before t = 1: V_1 for the financier
- Liquidation before t = 1: αV_1 for other institutions
- Liquidation before t = 1:0 for entrepreneurs

Simple Model: Renegotiation Proof (Cont.)

- Assume borrower has all the bargaining power
- At t = 0, a contract would be offered by entre
 (M, R): money invested and repayment
- Entrepreneurs design the contract s.t.
 - $\Box \quad y R \ge 0$
 - □ Financier has no incentive to liquidate before t = 1

Renegotiation Proof Contract

Reduced to a two-stage dynamic game

Renegotiation Proof Contract (Cont.)

Transformed into a Nash bargaining problem

$$\max [(R - M) - (V_1 - M)]^0 (y - R)^1$$

$$s.t. R - V_1 \ge 0$$

$$y - R \ge 0$$

- To induce financier into taking the offer $R - M \ge 0$
- Outcome: (M, V_1) with $M \leq V_1$

Intermediary Financier No Cash

- Assume only the uniformed leader has funds
- Two ways now for entre to be invested
 - Directly from uniformed leader
 - □ Indirectly from intermediary

Intermediary Financier No Cash (Cont.)

- Case 1: directly from the uniformed leader
 Liquidation value: *αV*₁
 - □ Outcome: $(M, \alpha V_1)$ with $M \le \alpha V_1$
 - Case 2: indirectly from intermediary
 - □ Intermediary: full bargaining power against leader
 - □ Contract between leader and intermediary: $(M_1, \alpha V_1)$, with $M_1 \le \alpha V_1$
 - Level of financing is limited

Bank Runs: Remedy to Limited Financing

- Consider instead there are two depositors
- A deposit contract is offered by intermediary
 - Amount raised: V_1
 - □ Withdrawal of $\frac{V_1}{2}$: allowed at any time
 - □ First come, first served

Non-renegotiability

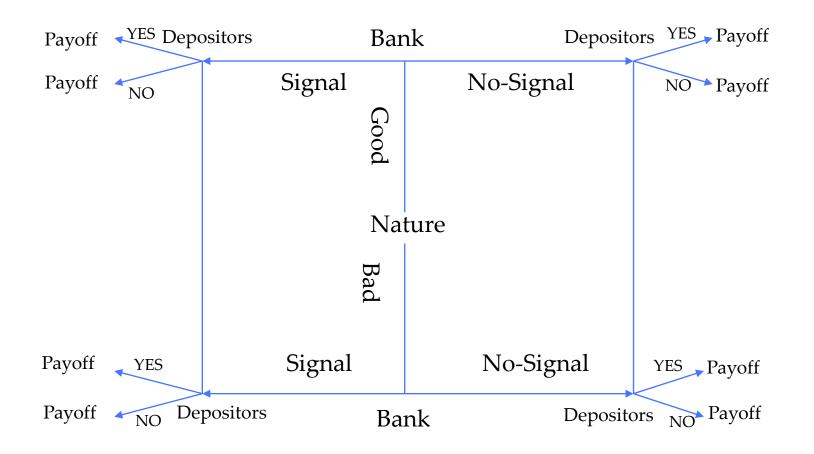
Without threat of renegotiation posed by bank

	Withdraw	Wait
Withdraw	$\left(\frac{\alpha V_1}{2}, \frac{\alpha V_1}{2}\right)$	$\left(\frac{d}{2}, \alpha V_1 - \frac{d}{2}\right)$
Wait	$\left(\alpha V_1 - \frac{d}{2}, \frac{d}{2}\right)$	$\left(\frac{V_1}{2}, \frac{V_1}{2}\right)$

If threat of renegotiation posed by bank

	Withdraw	Wait
Withdraw	$\left(\frac{\alpha V_1}{2}, \frac{\alpha V_1}{2}\right)$	$\left(\frac{d}{2}, \alpha V_1 - \frac{d}{2} - \varepsilon\right)$
Wait	$\left(\alpha V_1 - \frac{d}{2} - \varepsilon, \frac{d}{2}\right)$	$\left(\frac{V_1}{2} - \varepsilon, \frac{V_1}{2} - \varepsilon\right)$

Non-renegotiability: Commitment


- Two depositors withdraw
- Banks go bankruptcy
- Two depositors inherit the loan
- Banks' threat: incredible

- Expectation of bank runs
 - Limit renegotiation ability of banks
 - Ensure a credible commitment by banks
 - Lead to a higher level of financing

Efficient Bank Runs

- Bank runs
 - Correct in part the incentives of management to forebear
- Bank runs are efficient whenever
 - $\square \ l > E(R|S)$
 - □ where S is a signal on the future return for long run technology

Reconstruction

Signaling form: advertising, financial disclosure, e.t.c..

Extension: Interbank Markets

- Impossibility of liquidation: l = 0
- Banks with i.i.d. liquidity shocks
 - Proportion of patient depositors uncertainty
 - $\square (\pi_L, \pi_H) \text{ with probability } (p_L, p_H)$
 - Completely diversified

Autarky

- An ex ante investment decision made
- Contingent contract

$$C_1(\pi) = \frac{1-I}{\pi}, C_2(\pi) = \frac{RI}{1-\pi}, \pi = \pi_L, \pi_H$$

Depositors: bear the liquidity shock risk

$$\max \sum_{k=L,H} p_{k} [\pi_{k} u(C_{1}^{k}) + (1 - \pi_{k}) u(C_{2}^{k})]$$

$$s.t. \sum_{k=L,H} p_{k} \pi_{k} C_{1}^{k} = 1 - I$$

$$\sum_{k=L,H} p_{k} (1 - \pi_{k}) C_{2}^{k} = RI$$

 $(C_1^k, C_2^k): \text{ deposit contract offered by a bank } k$

Interbank Market: Results

Results:

$$C_1^k \equiv C_1^* = \frac{1 - I^*}{\pi_a}, C_2^k \equiv C_2^* = \frac{RI^*}{1 - \pi_a}, k = L, H$$

where $\pi_a = p_L \pi_L + p_H \pi_H$

Liquidity shock uncertainty eliminated

Optimal Allocation Decentralized

- Type *L* bank: Extra liquidity: $M_L = 1 - I^* - \pi_L C_1^*$
- Type *H* bank: Extra demand for liquidity: $M_H = \pi_H C_1^* - (1 - I^*)$
- Market clearing

$$p_L M_L = p_H M_H$$

Optimal Allocation Decentralized (Cont.)

At
$$t = 2$$
, type H bank has extra liquidity
 $RI^* - (1 - \pi_H)C_2^*$

Repayment of interbank load $(1+r)M_H$

$$(1+r) = \left(\frac{\pi_a}{1-\pi_a}\right) \left(\frac{I^*}{1-I^*}\right) R$$

Liquidity Depletion: Bank Runs

- Suppose now entrepreneurs faces uncertainty
 - □ Uncertainty in time point of returns: μ at t = 1
 - **L**iquidation at t = 1: αV_1
 - **L**iquidation at t = 2: αV_2

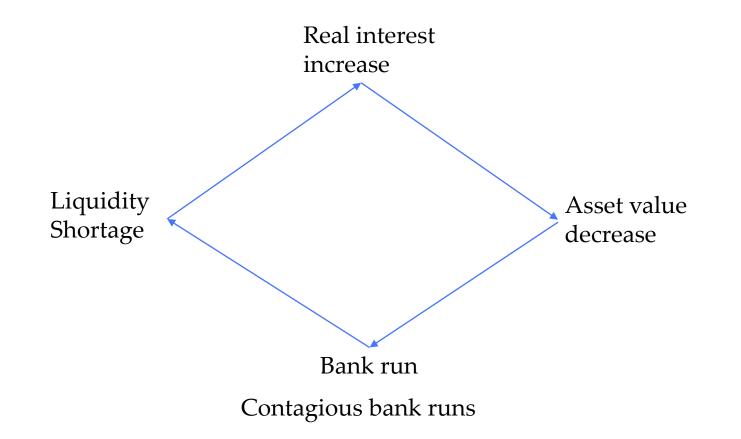
Liquidity Depletion: Loss for Bank Runs

Entrepreneurs' loss: y - R

Banks' loss:
$$R - \alpha \left(V_1 + \frac{V_2}{1+\rho} \right)$$

 \square ρ : equilibrium interest rate

- Case 1: no bank runs
 - □ Bank needs to acquire additional liquidity: $d \mu R$
 - Only way: liquidate late project


$$(1-\mu)\frac{\alpha V_2}{1+\rho}$$

- where ρ is equilibrium discount rate
- Entrepreneurs: $\mu(y R)$ liquidity

Liquidity Depletion: Mechanism

- Case 2: a bank run
 - **D** Banks' liquidity: $\mu \alpha V_1 < \mu R$
 - Entrepreneurs' liquidity: $\mu(y R)$ destroyed
- Bank run depletes liquidity
 - □ Intuition: value-added technology suspended

Debt deflation

Summary

- Background: Diamond and Dybvig (1983)
- Function of bank system
- Instability and remedies
- Back runs: sometimes efficient and useful