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POLICY PERSISTENCE AND DRIFT IN ORGANIZATIONS

GERMÁN GIECZEWSKI
Department of Politics, Princeton University

This paper models the evolution of organizations that allow free entry and exit of
members, such as cities and trade unions. In each period, current members choose a
policy for the organization. Policy changes attract newcomers and drive away dissatis-
fied members, altering the set of future policymakers. The resulting feedback effects
take the organization down a “slippery slope” that converges to a myopically stable
policy, even if the agents are forward-looking, but convergence becomes slower the
more patient they are. The model yields a tractable characterization of the steady state
and the transition dynamics. The analysis is also extended to situations in which the
organization can exclude members, such as enfranchisement and immigration.

KEYWORDS: Dynamic policy choice, median voter, slippery slope, endogenous pop-
ulation, transition dynamics.

1. INTRODUCTION

THIS PAPER studies the dynamic behavior of organizations that are member-owned—that
is, whose members choose policies through a collective decision-making process—and
allow for the free entry and exit of members. In this context, policy and membership de-
cisions affect one another: different policies appeal to or drive away different prospective
members, and different groups make different choices when in charge of the organiza-
tion. As a result, the policy path may drift over time: an initial policy may attract a set
of members wanting a different policy, which in turn attracts other agents, and so on.
It may also exhibit path-dependence: two organizations with identical fundamentals but
different initial policies may exhibit divergent behavior in the long run.

A prominent example where these issues arise is that of cities or localities. Concep-
tualize each city as an organization and its inhabitants as members. Cities allow people
to move in and out freely, and their inhabitants vote for local authorities who implement
policies, such as the level of property taxes, the funding of public schools, and housing reg-
ulations. The interplay between policy changes and migration can lead to demographic
and socioeconomic shifts interpreted as urban decay, revitalization, and gentrification
(Marcuse (1986), Vigdor (2010)). The relationship between local taxes and migration
has been studied since Tiebout (1956), who considered a population able to move across
a collection of communities with fixed policies. Epple and Romer (1991) allowed for re-
distributive policies and location decisions to respond to one another, but they studied
the problem in static equilibrium, that is, under the assumption that any temporary im-
balance between the people living in a community and the policies they want has already
resolved itself.

A natural follow-up question to this literature is whether, in a dynamic setting, commu-
nities will converge to a static equilibrium quickly, slowly, or not at all. The main reason
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252 GERMÁN GIECZEWSKI

convergence may fail to obtain is a fear of slippery slopes. Here is a simple example: sup-
pose a community with a local tax rate x0 = 0�2 attracts a population whose median voter,
m0, prefers a tax rate x1 = 0�18. Lowering the tax rate to x1 would attract a different pop-
ulation whose median voter, m1, has bliss point x2 = 0�16. In turn, the tax rate x2 would
beget a median voter wanting a tax rate x3 = 0�15, and so on. If agents vote myopically,
the tax rate will quickly move not to x1 but to a much lower steady state, say x∞ = 0�1.
Foreseeing this, m0 might prefer not to change the tax rate after all.

This paper shows that, in a dynamic model where both policies and membership are
determined endogenously, communities will, in fact, converge to a steady state, and all
steady states are myopically stable independently of the agents’ discount factor. However,
dynamic concerns induce agents to make smaller policy changes in each period than their
myopic preferences would dictate. In particular, when the median voter’s bliss point is
closer to the current policy than to the steady state, convergence is slow—that is, as agents
become arbitrarily patient, policy changes in each period become arbitrarily small. Thus,
communities observed in the world at any given time may well fail to be in static equilib-
rium, and predicting their future behavior requires an understanding of their transition
dynamics. The model also yields a tractable characterization of these dynamics, which al-
lows us to describe the equilibrium speed of policy change in terms of the strength of the
myopic incentives for change and the degree of expected disagreement with future pivotal
agents.

The location of steady states is characterized as a function of the distribution of pref-
erences. In general, policy drift leads organizations toward peaks of the distribution of
policy bliss points, which favors centrism if said distribution is unimodal and symmet-
ric. However, a pocket of agents concentrated at an extreme can also support a steady
state. When there are multiple steady states, which one the organization converges to de-
pends on its initial policy (i.e., there is path-dependence). Extreme steady states are more
likely if agents’ willingness to join is asymmetric (i.e., extremists are more willing to join a
moderate organization than vice versa). Relative to a setting with a fixed population, the
location of steady states is more sensitive to the distribution of preferences: small changes
in the distribution can result in arbitrarily large changes to the long-run policy.

This paper is connected to several strands of literature. First, as noted previously, it
can be seen as a study of dynamic Tiebout competition. There is a large literature on the
Tiebout hypothesis (see Cremer and Pestieau (2004) for a review), but most papers in it
assume that policies and location decisions must be in static equilibrium, and hence are
silent on the transition dynamics that this paper focuses on.

Second, the model can be applied to other organizations with open membership, such
as trade unions, nonprofits, sports clubs, and religious communities, and it is therefore
relevant to existing work about such organizations. For instance, Grossman (1984) ex-
plained why increased international competition may not decrease wages in a unionized
sector: layoffs selectively affect less senior workers, so the median voter within the union
becomes more senior—hence more securely employed, and prone to making more ag-
gressive wage demands. As in the Tiebout literature, Grossman (1984) assumed that pol-
icy and membership are always in static equilibrium, that is, that they adjust immediately
after an external shock; this paper can be seen as providing a model of the transition
dynamics.

Finally, the paper makes several contributions to a growing literature on dynamic po-
litical decision-making (Roberts (2015), Acemoglu, Egorov, and Sonin (2015), Bai and
Lagunoff (2011)). Most papers in this literature study organizations which can strategi-
cally restrict the entry of newcomers, remove existing members, or deny them political
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POLICY PERSISTENCE AND DRIFT 253

power (relevant applications include enfranchisement and immigration). Despite the ap-
parent substantive differences between this setting and mine, my results readily extend
to this context. The reason is that both types of models are driven by the same tension,
namely, that policies and decision-making power are coupled in a rigid manner, so agents
cannot choose their ideal policy without relinquishing control over future decisions.

There are two main branches in this literature. The first one (Roberts (2015), Ace-
moglu, Egorov, and Sonin (2008, 2012, 2015)) assumes a fixed, finite policy space and
obtains the result that, when agents are patient enough, convergence to a steady state
is “fast,” and steady states may not be myopically stable. The set of steady states can be
found by means of a recursive algorithm, but not described explicitly, and it is sensitive to
the set of feasible policies. What I show is that, if a continuous policy space is assumed,
these results are overturned: all steady states are myopically stable, and when agents are
patient, there is slow convergence which can be characterized explicitly (in some cases, in
closed form).

The second branch (Jack and Lagunoff (2006), Bai and Lagunoff (2011)) considers con-
tinuous policy spaces and obtains some important results related to the ones in this paper;
in particular, Bai and Lagunoff (2011) showed that, in their model, the steady states of
“smooth” equilibria are stable under the assumption of a fixed decision-maker (in our
setting, this is equivalent to myopic stability). However, they did not provide a general
characterization of which steady state the model will converge to, nor of the transition
dynamics. Moreover, their analysis applies only to smooth equilibria, which do not exist
generically. In contrast, I derive results that apply either to all equilibria or to classes of
equilibria for which I can provide existence conditions.

On a technical note, the present paper is also the first in this literature to tractably
analyze a setting that violates the single-crossing assumption on preferences—a necessary
complication in a context with free entry and exit, stemming from the fact that agents
unhappy with the chosen policy can cut their losses by leaving the organization.

The paper is structured as follows. Section 2 presents the model. Section 3 proves some
fundamental properties of all equilibria and characterizes the organization’s policy in the
long run. Section 4 characterizes the transition dynamics. Section 5 adapts the results to
a setting without free entry and exit. Section 6 discusses some implications of the results
and revisits their relationship with the existing literature. Section 7 is a conclusion. All the
proofs can be found in the Appendices.

2. THE MODEL

There is an organization (henceforth, a club) existing in discrete time t = 0�1� � � � and a
unit mass of agents distributed according to a continuous density f with support [−1�1].
We refer to an agent’s position α in the interval [−1�1] as her type. All agents are potential
members of the club.

At each integer time t ≥ 1, two events take place. First, there is a voting stage, in which
a set of incumbent members It−1 ⊆ [−1�1] vote on a policy xt ∈ [−1�1] to be implemented
during the period [t� t + 1). Immediately after, in the membership stage, all agents observe
xt and decide whether to be members during the upcoming period [t� t + 1). Agents can
freely enter and leave the club as many times as desired at no cost. The set of agents who
choose to be members at time t constitutes It , the set of incumbent members at the t + 1
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254 GERMÁN GIECZEWSKI

voting stage.1 At t = 0, the game starts with a membership stage; the club’s initial policy
x0 is exogenously given.

The essential feature of this setup is that membership affects both an agent’s utility and
her right to vote. Agents will decide whether to be in the club based on their private pay-
offs, since the impact of any individual agent’s vote on future policies is nil, but aggregate
membership decisions will influence future policies.

Preferences

An agent α has utility

Uα

(
(xt)t� Iα

) =
∞∑
t=0

δtIαtuα(xt)�

where Iαt = 1{α∈It } denotes whether α is a member at time t. In other words, the agent
can obtain a payoff uα(xt) from being a member of the club, or a payoff of zero from
remaining an outsider. δ ∈ (0�1) is a common discount factor. We make the following
assumptions on u:

A1 uα(x) : [−1�1]2 → R is C2.
A2 There are 0 <M ′ <M such that M ′ ≤ ∂2

∂α∂x
uα(x)≤ M for all α, x.

A3 uα(α) > 0 for all α ∈ [−1�1].
A4 For a fixed α0, uα0(x) is strictly concave in x with peak x = α0.
A5 For a fixed x0, ∂uα(x0)

∂α
> 0 if α< x0 and ∂uα(x0)

∂α
< 0 if α> x0.

The essence of Assumptions A2–A5 is that agent α has bliss point α and wants to be in
the club if the policy xt is close enough to α; higher agents prefer higher policies; and
the set of agents desiring membership is always an interval. A useful example for building
intuition is the quadratic case: uα(x) = C − (α−x)2, where C > 0. Finally, we impose the
following tie-breaking rule:

A6 An agent α’s preferences at time t0 are as defined by Uα when comparing any two
paths ((xt)t� Iα), ((x̃t)t� Ĩα) with membership rules Iα, Ĩα that are not both zero
for all t ≥ t0. However, if Iαt = Ĩαt = 0 for all t ≥ t0, then α prefers ((xt)t� Iα) to
((x̃t)t� Ĩα) iff uα(xt0)≥ uα(x̃t0).

In other words, if an agent expects to permanently quit the organization immediately after
the current voting stage, she breaks ties in favor of the path with the better current policy.
This assumption prevents members who intend to quit from making arbitrary choices out
of indifference.2

Solution Concept

We will use Markov Voting Equilibrium (MVE) (Roberts (2015), Acemoglu, Egorov,
and Sonin (2015)) as our solution concept. This amounts to imposing two simplifying as-
sumptions on our equilibrium analysis. First, rather than explicitly modeling the voting

1The assumption that agents vote the period after joining rules out equilibria in which agents who dislike
the current policy might join because they expect the policy to immediately change to their liking. Equivalent
results would be obtained by assuming that agents can enter or leave at any time t ∈ R≥0 but only gain voting
rights after being members for a short time ε ∈ (0�1).

2This tie-breaking rule would be uniquely selected if the game were modified to add a small time gap be-
tween the voting and membership stages, so that outgoing members at time t would receive a residual payoff
εuα(xt0) from the policy xt0 chosen right before they leave.
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POLICY PERSISTENCE AND DRIFT 255

process, we assume that only Condorcet-winning policies can be chosen on the equilib-
rium path, as otherwise a majority could deviate to a different policy. Second, we focus
on Markov strategies. That is, when votes are cast at time t, voters only condition on the
set of incumbent members, It−1; when entry and exit decisions are made, the only state
variable is the chosen policy, xt .3

DEFINITION 1: Let L([−1�1]) be the Lebesgue σ-algebra on [−1�1]. A Markov strat-
egy profile (s̃� I) is given by a membership function I : [−1�1] →L([−1�1]), and a policy
function s̃ : L([−1�1]) → [−1�1] such that s̃(I) = s̃(I ′) whenever I and I ′ differ by a set
of measure zero.

We denote by s = s̃ ◦ I the successor function. A policy x induces a set of members I(x),
who will vote for a policy s̃(I(x))= s(x) in the next period. Hence, an initial policy y leads
to a policy path S(y)= (y� s(y)� s2(y)� � � �).

DEFINITION 2: An MVE is a Markov strategy profile (s̃� I) such that:
1. Given a policy x, α ∈ I(x) iff uα(x)≥ 0.
2. Given a set of voters I, the policy path S(s̃(I)) is a Condorcet winner among the

available policy paths. That is, for each y 
= s̃(I), a weak majority of I weakly prefers
S(s̃(I)) to S(y).4

From here on, we describe equilibria in terms of I and s rather than I and s̃. This is
without loss of detail, as the set of voters is always of the form I(x) on the equilibrium
path.5

We now provide some definitions that will be useful for our analysis. x ∈ [−1�1] is a
steady state of a successor function s if s(x) = x. x is stable if there is a neighborhood
(a�b) � x such that, for all y ∈ (a�b), st(y) −−→

t→∞
x. We refer to the largest such neighbor-

hood as the basin of attraction of x.
We define the median voter function m as follows: for each policy x, m(x) is the median

member of the induced voter set I(x), that is,
∫ m(x)

−1 f (y)1{α∈I(x)} dy = ∫ 1
m(x)

f (y)1{α∈I(x)} dy .6

Finally, we will often be interested in whether an equilibrium satisfies the median voter
theorem (MVT), that is, whether the Condorcet-winning policy for a voter set I(x) is also
m(x)’s optimal choice. Formally, given a successor function s and a set X ⊆ [−1�1], we
will say the MVT holds in X if, for each x ∈ X and all y ∈ [−1�1], m(x) weakly prefers
S(s(x)) to S(y).

Examples

As an illustration, we map the model to two concrete examples. The first one is Tiebout-
style policy competition between cities. Assume that there is a universe of “normal” cities

3Our solution concept is equivalent to pure-strategy Markov Perfect Equilibrium (MPE), if in each voting
stage two office-motivated politicians engage in Downsian competition.

4Note that only one-shot deviations are considered: after a deviation to y 
= s(x), it is expected that the
MVE will be followed; otherwise, for example, the policy path will be (y� s(y)� � � �) instead of (s(x)� s2(x)� � � �).
This is without loss of generality.

5If an agent deviates from her equilibrium membership decision, the resulting set of members will differ
from I(x) by a set of measure zero, so tomorrow’s policy will be unchanged.

6m(x) is uniquely defined if I(x) is an interval, as will turn out to be the case.
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256 GERMÁN GIECZEWSKI

c ∈ [−1�1], and a “special” city c∗. Cities differ in two ways. First, each city has a policy
xt(c) ∈ [−1�1], denoting a certain level of taxation and public goods in city c at time t. For
example, a higher x represents higher local taxes which finance better public schools and
amenities. Second, c∗ has an intrinsic attribute that makes it more desirable than normal
cities (good weather, a strong economy, etc.). For simplicity, suppose that each normal
city has a positive mass of immobile voters tied to it, and the median immobile voter in
city c has bliss point c, so that xt(c) = c for all t, c. In addition, there is a unit mass of
mobile agents in the model, whose bliss points are distributed according to a density f .
x0(c

∗) is exogenous.
We are interested in the policy path of c∗ and the behavior of mobile agents. At each

time t, each mobile agent α chooses a city to live in. Her flow payoff from choosing c
is uα(x� c) = C1c=c∗ − (xt(c) − α)2, where C > 0 is the intrinsic value of c∗. Clearly, her
decision boils down to a binary choice: she should live either in c∗ or in her most-preferred
normal city, c = α, yielding a flow payoff of zero. Living anywhere but in c∗ is equivalent
to leaving the club in the general model.

The second example we discuss is that of trade unions. Assume an economy with a
unionized firm and a larger competitive (non-union) sector. Firms offer employment con-
tracts (w� l) consisting of a wage w and a family leave policy l. The marginal productivity
of all workers is normalized to 1, and a leave policy l signifies that the worker only works
a fraction 1 − l of the time. In equilibrium, competitive firms are willing to offer any con-
tract of the form (1 − l� l); the competitive sector is assumed to be large enough that all
such contracts are available. The union, through collective bargaining, extracts a wage
wu > 1 from the unionized firm, so its leadership can bargain for any contract of the form
(wu − l� l), but the same contract must apply to all unionized workers. As in Grossman
(1983), assume the union bargains on behalf of its median voter.

Workers differ in their taste for family leave. A worker of type α has flow payoff
ũα(w� l) = w + αv(l), where v(0) = 0 and v is smooth, increasing, and strictly concave
in l. Workers can move freely between firms, including to the unionized firm; upon join-
ing the latter, they automatically become union members.7

Of all the competitive firms, a worker α prefers to join one offering l = l∗(α), where
v′(l∗(α)) = 1

α
. Let uα(l) = ũα(wu − l� l)− ũα(1 − l∗(α)� l∗(α)) be α’s net utility from join-

ing the union sector when the union has bargained for a contract (wu − l� l). Up to a
relabeling, u satisfies Assumptions A1–A5 and hence the model applies without changes.

3. EQUILIBRIUM ANALYSIS

In this section, we prove some fundamental properties of all MVEs, which in particu-
lar allow us to characterize the club’s policy in the long run. We start by solving for the
equilibrium membership strategy, which is simple:

LEMMA 1: In any MVE, I(y) = [y − d−
y � y + d+

y ] is an interval, and d−
y � d

+
y > 0 are given

by the condition uy−d−
y
(y)= uy+d+

y
(y)= 0.

Since members can enter or leave at any time, it is optimal for α to join whenever
the flow payoff of the current policy, uα(x), is positive, and leave when it is negative;
the lemma then follows from Assumptions A3 and A5. An immediate corollary is that

7This is a common arrangement known as a “union shop.”
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POLICY PERSISTENCE AND DRIFT 257

m is strictly increasing and C1. Additionally, since I(x) is uniquely determined, we can
describe MVEs solely in terms of successor functions.

Before characterizing s in general, it is instructive to consider two simple special cases.
First, suppose that I(y) = I is independent of y (for instance, I(y) ≡ [−1�1], i.e., every-
one always prefers to be in the club). In this case, regardless of the current policy y , the
Condorcet winner is the bliss point of the median member of I. Second, suppose that δ =
0, that is, agents are myopic. Given an initial policy y and set of members I(y), the Con-
dorcet winner is the bliss point of m(y), and the policy path will be (y�m(y)�m2(y)� � � �),
which converges to a myopically stable policy m∗(y) = limk→∞ mk(y). In both scenarios,
the simplicity of the solution stems from the lack of tension between current payoffs and
future control: in the former case there is no link between them, while in the latter case
they are linked but voters do not care.

As a first step toward solving the general case, we show that equilibrium paths are
always monotonic.

PROPOSITION 1: In any MVE, for any y , if s(y)≥ y , then sk(y) ≥ sk−1(y) for all k, and if
s(y)≤ y , then sk(y)≤ sk−1(y) for all k.

To see why this must be the case, imagine an equilibrium path (x0�x1� � � �) that increases
up to xk (k > 0) and decreases afterwards. Then S(xk) must be a Condorcet winner in
I(xk−1), and S(xk+1) must be a Condorcet winner in I(xk). In particular, a majority in
I(xk−1) must prefer S(xk) to S(xk+1) but a majority in I(xk) must prefer the opposite.
This is impossible because S(xk+1) has a lower average policy than S(xk), while the group
I(xk) contains agents with higher bliss points than I(xk−1).8 Our next result characterizes
the long-run behavior of any MVE satisfying the MVT.

PROPOSITION 2: In any MVE s and for any y:
(i) If m(y)= y , then s(y)= y .

(ii) If m(y) > y , then m∗(y) > s(y) ≥ y . Moreover, if the MVT holds in [y�m∗(y)], then
s(y) > y and sk(y)−−→

k→∞
m∗(y).

(iii) If m(y) < y , then m∗(y) < s(y) ≤ y . Moreover, if the MVT holds in [m∗(y)� y], then
s(y) < y and sk(y)−−→

k→∞
m∗(y).

In other words, the steady states of any MVE s satisfying the MVT are simply the fixed
points of the mapping y �→ m(y). Moreover, stable (unstable) steady states of s are also
stable (unstable) fixed points of m, and their basins of attraction coincide.

The intuition for why we should observe s(x) ≤ x if m(x) < x and vice versa is straight-
forward: if m(x) < x for x in an interval (x∗�x∗∗), any policy in that interval attracts a set
of voters whose median wants a lower policy. The main conclusion of Proposition 2 is that
slippery slope concerns cannot create myopically unstable steady states, that is, s(x) 
= x
if there is a myopic incentive to change the policy. The logic behind the proof is as fol-
lows. Suppose m(x) < x, but m(x) is afraid of further policy changes if she moves to any
y < x. If m(x) chooses a slightly better policy y = x− ε, her flow payoff tomorrow will in-
crease by roughly ε| ∂u

∂x
|. In exchange, she will relinquish control over the continuation to a

8Analogous results are shown in Roberts (2015) and Acemoglu, Egorov, and Sonin (2015). The proof here
is more involved because, owing to the infinite policy space, we have to rule out non-monotonic paths that
never reach their supremum or infimum.
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258 GERMÁN GIECZEWSKI

FIGURE 1.—Convergence to steady states in MVE.

slightly different voter, m(x−ε). Because they have similar preferences (Assumption A2),
m(x−ε)’s optimal choice is also approximately optimal for m(x). Hence the cost of losing
control is small, that is, no higher than M(m(x)−m(x− ε))

∑
t δ

k|sk(x)− sk(s(x− ε))|.
If S(s(x − ε)) converges to S(x) pointwise as ε → 0, this loss is of order o(ε), so m(x)
should deviate to y = x− ε for ε small enough. If not, it can be shown that m(x) must be
indifferent between S(x) and limε→0 S(s(x− ε)), and an analogous argument can then be
made.

Figure 1 illustrates the equilibrium properties stated in Proposition 2 in an example
with three steady states: x∗

1 and x∗
3 are stable, while x∗

2 is unstable. This alternation of
stable and unstable steady states occurs in general as long as m is well-behaved. Formally,
in the rest of the paper we will assume the following:

B1 The equation m(y) = y has finitely many solutions x∗
1 < x∗

2 < · · · < x∗
N . In addition,

m′(x∗
i ) 
= 1 for all i.

COROLLARY 1: m has an odd number of fixed points. For odd i, m′(x∗
i ) < 1 and x∗

i is a
stable steady state of every MVE; for even i, m′(x∗

i ) > 1 and x∗
i is unstable.

Our last result in this section guarantees that, in a sizable neighborhood of each sta-
ble steady state, every equilibrium satisfies the MVT, and hence the main conclusion of
Proposition 2 applies. In addition, within the same neighborhood, every equilibrium must
be monotonic (a stronger property than path-monotonicity) and an equilibrium restricted
to this neighborhood must exist.

PROPOSITION 3: Let x∗ be such that m(x∗) = x∗ and m′(x∗) < 1; let x∗∗∗ < x∗ < x∗∗ be
the unstable steady states adjacent to x∗. Then an MVE restricted to I(x∗)∩ (x∗∗∗�x∗∗) exists,9
and any MVE is weakly increasing and satisfies the MVT in I(x∗)∩ (x∗∗∗�x∗∗).

The reason these results may fail to hold outside of I(x∗) ∩ (x∗∗∗�x∗∗) is that they rely
on pivotal voters not leaving the club on the equilibrium path; when pivotal voters quit
the club at different times, the logic that voters with higher bliss points should like higher
paths does not always apply.10

9s is a MVE restricted to [a�b] if it is a MVE when the policy space is restricted to [a�b].
10For instance, let α = 0�6, α̃ = 0�5, and S = (0�7�0�1), T = (0�65�0) be two-period policy paths. If α, α̃ never

leave under either path, Uα(S) − Uα(T) > Uα̃(S) − Uα̃(T) by Assumption A2; but if uα(0) < 0, it is possible
that Uα(S) − Uα(T) < Uα̃(S) − Uα̃(T). By the same logic, the set of voters preferring S to T may not be an
interval, so a winning coalition need not contain the median voter.
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POLICY PERSISTENCE AND DRIFT 259

We finish this section with two remarks. First, an alternative approach to solving for
MVEs would be to study a game in which, given a policy x, the agent m(x) is by as-
sumption given direct control over tomorrow’s policy.11 In this closely related game, the
main conclusion of Proposition 2 holds for all Markov equilibria. Second, as we will see
next, under some conditions, we will be able to guarantee the existence of MVE that are
monotonic and satisfy the main conclusion of Proposition 2 everywhere.

4. TRANSITION DYNAMICS

This section analyzes the transition dynamics of the model in more detail. Without loss
of generality, we restrict our analysis to the right side of the basin of attraction of a stable
steady state, that is, an interval [x∗�x∗∗) such that m(x∗)= x∗, m(x∗∗)= x∗∗, and m(y) < y
for all y ∈ (x∗�x∗∗).12

We begin by noting that, under mild conditions, convergence to a steady state is far
from instant, and becomes arbitrarily slow if agents are arbitrarily patient. Formally, say
m(x) ∈ (x∗�x∗∗) is reluctant if um(x)(x) > um(x)(x

∗), that is, m(x) would rather stay at x
than move instantly to x∗.13 If so, let z(x) be the unique policy in (x∗�m(x)) for which
um(x)(x) = um(x)(z(x)).

PROPOSITION 4: If m(x) is reluctant, then, for all y < z(x), ∃K(y) > 0 such that, for any
δ and any MVE s of the game with discount factor δ, min{t : st(x) ≤ y} ≥ K(y)δ

1−δ
.

The reason is simply that, if this condition were violated, m(x) would rather stay at x
forever.14 Thus, if there are reluctant agents, knowing the club’s long-run policy is not
enough to characterize the agents’ utility even as δ → 1, unlike in related models (cf.
Acemoglu, Egorov, and Sonin (2012)); further analysis of the transition path is necessary.

In the remainder of this section, we propose a natural class of equilibria, which we call
1-equilibria (henceforth 1Es), and study their transition dynamics. There are two reasons
to focus on 1Es. The first is tractability: 1Es have a simple structure, and their transition
dynamics can be explicitly characterized in the limit as agents become more patient. The
second is robustness: 1Es are guaranteed to exist under some conditions we will provide,
while other types of equilibria (including smooth equilibria) cannot be guaranteed to ex-
ist. We begin with a definition of 1Es and two related concepts.

DEFINITION 3: Let s be a successor function on [x∗�x∗∗]. s is a 1-function if there is a
sequence (xn)n∈Z such that xn+1 < xn for all n, xn −−−→

n→−∞
x∗∗, xn −−→

n→∞
x∗, and s(x)= xn+1 if

x ∈ [xn�xn−1). We call (xn)n the recognized sequence of s.
s is a 1-equilibrium (1E) if it is a 1-function and an MVE.
s is a quasi-1-equilibrium (Q1E) if it is a 1-function such that (1 − δ)Um(xn)(S(xn+1)) =

um(xn)(xn+1) for all n.

11This approach has been taken in the literature, for example, in Bai and Lagunoff (2011).
12For any y ∈ (x∗�x∗∗), I(y) never wants to choose a policy outside of (x∗�x∗∗), so s|(x∗�x∗∗) can be studied in

isolation. Results for a basin of attraction of the form [x∗�1] or [x∗∗∗�x∗] are analogous.
13For instance, in the quadratic case, if m′(x) > 1

2 for all x, then every agent is reluctant.
14A partial converse holds: if um(x)(x

∗) > um(x)(x) for all x, then, for all y ∈ (x∗�x), min{t : st(x) ≤ y} ≤
K̃(y), with K̃(y) independent of δ.
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260 GERMÁN GIECZEWSKI

FIGURE 2.—1-equilibrium for uα(x) = C − (α− x)2, m(x)= 0�7x, δ = 0�7.

In a 1E, the chosen policies are always elements of the recognized sequence (xn)n. xn

today leads to xn+1 tomorrow; if the initial policy is not part of the recognized sequence,
but is between xn and xn−1, then xn+1 is chosen, and the path follows the recognized se-
quence thereafter. An illustration is given in Figure 2. The notion of Q1E is useful to
study because Q1Es are closely related to 1Es, but are easier to construct. The following
proposition summarizes the relationship between the two.

PROPOSITION 5:
(i) Every 1E is also a Q1E.

(ii) A Q1E exists. Moreover, for each x ∈ (x∗�x∗∗), there is a Q1E sx with x0 = x.
(iii) In any Q1E, for all x ∈ [xn�xn−1) and for all k, a majority in I(x) prefers S(xn+1) to

S(xk).
(iv) Any Q1E such that m(xn) < xn+2 for all n is a 1E within [x∗�m−1(x∗ + d+

x∗)].
To see why 1Es are also Q1Es, consider a 1E s with recognized sequence (xn)n. By

construction, a majority in I(xn) prefers S(xn+1) to S(xn+2). But, for any x in a left-
neighborhood of xn, a majority of I(x) prefers S(xn+2) to S(xn+1). Due to the fact
that S(xn+1) = (xn+1� S(xn+2)), a voter α prefers S(xn+1) to S(xn+2) iff uα(xn+1) ≥ (1 −
δ)Uα(S(xn+1)), and it can be shown that the set of voters with this preference is of the
form [α∗�1]. Then we must have α∗ = m(xn). By continuity, m(xn) is indifferent between
S(xn+1) and S(xn+2), that is, (1 − δ)Um(xn)(S(xn+1))= um(xn)(xn+1).

Part (ii) of Proposition 5 guarantees that Q1Es always exist—in fact, there is a contin-
uum of them. Part (iii) is a partial converse of (i): it shows that, in a Q1E, no deviations
to other policies on the recognized sequence are possible. To see why I(xn−1) will not de-
viate to S(xn+2), for instance, note that m(xn) is indifferent between S(xn+1) and S(xn+2),
so m(xn−1) prefers S(xn+1) to S(xn+2), and is indifferent between S(xn) and S(xn+1) by
construction. Equivalently, then, the only reason a Q1E may fail to be a 1E is if a majority
wants to deviate off the recognized sequence.

Intuitively, such deviations will not be desirable if the median voter, m(xn), is far to
the left of the first few elements of the sequence following xn. To see why, note that, if
m(xn) ∈ [xk�xk−1), deviating to a policy y ∈ (xl� xl−1) with l < k would be even worse than
deviating to xl, while deviating to y ∈ (xl� xl−1) with l > k would be worse than deviating
to xl−1. Hence the only deviations m(xn) might prefer are deviations to y ∈ (xk�xk−1). In
particular, picking y = m(xn) is better than deviating to xk. But such a deviation will still
be unprofitable if S(xn+1) is too strongly preferred to S(xk). This is the idea behind part
(iv); a more powerful result along these lines will be given in the next subsection.

Finally, note that, in a 1E, m(xn)’s averaged per-period utility equals um(xn)(xn+1).
Hence her net gain from not staying at xn forever, V (m(xn)) := (1 − δ)Um(xn)(S(xn+1))−
um(xn)(xn), is approximately proportional to the equilibrium speed of policy change;
specifically, it equals (xn − xn+1)| ∂um(xn)(y)

∂y
| for some y ∈ [xn+1�xn].
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POLICY PERSISTENCE AND DRIFT 261

Continuous Time Limit

We now characterize the limit of 1Es as the time gap between rounds of voting becomes
arbitrarily small. This can be taken as an approximation of a setting in which voting hap-
pens periodically (e.g., at annual elections), but often enough relative to the agents’ time
horizon. The same results will also allow us to characterize the limit of 1Es with a fixed
time gap between periods as δ→ 1.

Denote δ = e−r . We will work with the following objects. First, for each j ∈ N, consider
a version of the game from Section 2 in which policy and membership decisions are made
at every time t ∈ {0� 1

j
� 2

j
� � � �} instead of at every integer time. We will call this the j-refined

game, and denote a Q1E of this game by sj . In addition, for each t ∈ R≥0, we denote by
sj(x� t) the equilibrium policy at time t if the initial policy is x and sj is played—that is,
sj(x� t) = s

�tj�
j (x). Note that this game is, up to a relabeling, equivalent to the model in

Section 2 with discount factor δj = e− r
j .

Finally, we define a continuous limit solution (CLS) as a function s(x� t) : [0�+∞) ×
[x∗�x∗∗) → [x∗�x∗∗) with the following properties: s(x� t + t ′) ≡ s(s(x� t ′)� t); s(x�0) ≡ x;
s is weakly decreasing in t; s(x� t) −−→

t→0
x for all x; and Um(x)(S(x)) = um(x)(x) for all x ∈

(x∗�x∗∗), where Uα(S(x))= ∫ ∞
0 re−rt max(uα(s(x� t))�0)dt.

The following proposition relates the CLS to the Q1Es of the j-refined games.

PROPOSITION 6: Suppose that m ∈C2 and a CLS s exists. Then:
(i) s is the unique CLS, and s is C1 as a function of t.

(ii) For any sequence (sj)j , where sj is a Q1E of the j-refined game, for all x and t,
sj(x� t) −−→

j→∞
s(x� t).

(iii) There is δ < 1 such that, for all δ > δ, all Q1Es of the discrete-time game with discount
factor δ are 1Es.

The intuition behind a CLS is the following. Fix x, and take a sequence (sj)j of Q1Es
of the j-refined games with xj0 = x. Recall that Um(xjn)(Sj(xj(n+1)))= um(xjn)(xj(n+1)) for all
j, n.15 Suppose that, as j → ∞, the transition paths Sj(x) = (sj(x� t))t converge pointwise
to a continuous path S(x). Then the differences xj0 − xj1 go to zero, and in the limit,
Um(x)(S(x)) = um(x)(x). This is why we require this condition of a CLS. Part (ii) of Propo-
sition 6 is a converse to this argument: it shows that, when a CLS exists, the transition
paths of all Q1Es must converge to it as j → ∞.

Whether a CLS exists is a property of the primitives u and m; it can be determined
in isolation from our game. We can both verify whether a CLS exists and calculate it
explicitly, as follows. Denote by e(x) = − 1

∂s(x�t)
∂t |t=0

the instantaneous delay of a CLS at x.
If Um(x)(S(x)) = um(x)(x) for all x, then, differentiating with respect to x,

m′(x)
∂Um(x)

(
S(x)

)
∂α

=m′(x)
∂um(x)(x)

∂α
+ ∂um(x)(x)

∂x
� (1)

15In this argument, we write Um(x)((xt)t) = (1 − δ)
∑

δtIαtuα(xt) to simplify notation.
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262 GERMÁN GIECZEWSKI

FIGURE 3.—A continuous limit solution.

The key observation is that ∂
∂x

∂Um(S(x))

∂α
= (

∂um(x)(x)

∂α
− ∂Um(S(x))

∂α
)re(x). Hence, differentiating

Equation (1) yields an equation that pins down e(x). After rearranging, we find

−∂u

∂x
re(x) = 2m′ ∂2u

∂α∂x
+ ∂2u

∂x2 + (
m′)2

(
∂2u

∂α2 − ∂2Um(x)

(
S(x)

)
∂α2

)
− m′′

m′
∂u

∂x
� (2)

where u stands for um(x)(x). This is an integral equation because ∂2U
∂α2 is evaluated at S(x),

which depends on e(y) for y ∈ [x∗�x). But we can solve it forward, starting at x∗, to find
e(x) and, with it, the unique CLS. In fact, a CLS always exists unless the function e(x)
that solves Equation (2) turns negative. This is guaranteed not to happen if the forces
pulling toward policy change are not too great:

PROPOSITION 7: Holding u constant, there exist B, B′, B′′ > 0 such that, if x−m(x) ≤ B,
m′(x) ∈ [1 −B′�1 +B′], and m′′(x)≥ −B′′ for all x, then a CLS exists.

The quadratic case is useful for illustrative purposes. In that case, for x ∈ I(x∗), Equa-
tion (2) reduces to

re(x) = 2m′(x)− 1
x−m(x)

+ m′′(x)
m′(x)

� (3)

so the speed of convergence can be calculated in closed form. Equation (3) reflects three
forces at work in determining e(x). First, the policy changes more slowly (e(x) is higher)
when the myopic incentive for policy changes, x − m(x), is small. Second, the policy
changes more slowly when m′(x) is high. The reason is that changing the policy to x − ε
entails yielding control to another agent m(x− ε). The higher m′ is, the more costly this
loss of control becomes. Third, the policy changes more slowly when m′′(x) is high. The
reason is that, when m is convex, m′(x) is higher than m′(x − ε); hence the agent m(x)
yields control to will not be as concerned about the behavior of her own successors, and
so will make faster policy changes than m(x) would like. These forces are illustrated in
Figure 3.

Finally, part (iii) of Proposition 6 guarantees that, when there is a CLS, all Q1Es must
be true 1Es when agents are patient enough. The reason is related to our discussion
of Proposition 5: as the transition paths of Q1Es approach the CLS, they must feature
smaller and smaller jumps between consecutive policies; in this scenario, deviations off
the recognized sequence are never majority-preferred.

We conclude this section with a few observations. First, the speed of policy change in a
CLS is exactly inversely proportional to the agents’ patience:
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POLICY PERSISTENCE AND DRIFT 263

REMARK 1: If s(x� t) is a CLS for discount rate r, then s̃(x� t) ≡ s(x� r̃
r
t) is a CLS for

discount rate r̃. The respective instantaneous delays e(x), ẽ(x) satisfy ẽ(x) = r
r̃
e(x).

The reason is that changing r is equivalent to a relabeling of the time variable. Second,
when a CLS exists, Proposition 6 and Equation (2) together yield an asymptotic charac-
terization of the transition path for all 1Es of the game from Section 2 when agents are
patient.16 Formally, let e1(x) be the solution to Equation (2) for r = 1. Then, for any y < x

and any collection of 1Es sδ for δ≥ δ,

(1 − δ)min
{
t : stδ(x)≤ y

} −−→
δ→1

∫ x

y

e1(z)dz� (4)

This is, in effect, a more precise version of Proposition 4. Third, recall that, in a 1E, the
net per-period gain V (m(xn)) of a pivotal agent m(xn) from following the equilibrium
path (relative to staying at xn) is of the order xn − xn+1. Thus, if a CLS exists, for any
x and any collection of 1Es sδ, Vδ(m(x)) → 0 as δ → 1. In other words, the “rents” a
pivotal agent gets from the best non-constant continuation evaporate as agents become
more patient (or decisions are made more often). An intuition is that these rents are the
result of agents being able to “lock in” their chosen policy for one period before losing
control—hence they vanish as the periods shorten.

Fourth, it is not hard to find examples in which a CLS fails to exist.17 However, even
when there is no CLS, a version of Proposition 6 holds: under some conditions, Q1Es
can still be guaranteed to be 1Es for high δ, and all sequences of Q1E transition paths
converge to a common limit, but this limit is no longer continuous. The details for this
case are presented in Appendix B in the Supplemental Material (Gieczewski (2021)).

5. A MODEL OF POLITICAL POWER

We now discuss a variant of the model that overturns the assumption of free entry
and exit. Consider a polity governed by an endogenous ruling coalition. At each time t =
1�2� � � �, the ruling coalition chooses a policy xt ; the initial policy x0 is exogenous.

The model is the same as the one presented in Section 2, but with two differences.
First, the policy xt now directly determines not just the flow payoffs of all agents during
the period [t� t+1), but also the ruling coalition at time t+1. In other words, the mapping
x �→ I(x) is now taken as a primitive of the model. (We assume that I(x) is still an interval
(x − d−

x �x + d+
x ) for each x, with x − d−

x , x + d+
x increasing and C1 as functions of x.)

Second, in this model, all agents are impacted by the policy, regardless of whether they
are in the ruling coalition. In other words,

Uα

(
(xt)t� Iα

) =
∞∑
t=0

δtuα(xt)�

where uα satisfies Assumptions A1, A2, and A4. This setting is similar to the canonical
model of “elite clubs” (Roberts (2015)), but with a continuous policy space. It can be
framed as a model of enfranchisement (Jack and Lagunoff (2006)), institutional change

16This is a consequence of Proposition 6 for a sequence (δj)j of the form δj = e− r
j , but in fact the proof of

the proposition does not rely on the j’s being integers, only that j → ∞.
17For example, if there is a non-reluctant agent, then a CLS cannot exist.
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264 GERMÁN GIECZEWSKI

(Acemoglu, Egorov, and Sonin (2012, 2015)), or economic policymaking in a world where
political influence is a function of wealth (Bai and Lagunoff (2011)). Clearly, slippery
slope concerns apply here as well: a ruling coalition may want to expand the franchise
(e.g., to lower unrest) but fear that the new voters will choose to expand it even further.

Our analysis of the main model extends to this case as follows. First, all of our previous
propositions continue to hold, with analogous proofs. Second, the conclusions of Propo-
sitions 3 and 5(iv) now hold for all x ∈ [−1�1], as opposed to only in a neighborhood of
each stable steady state.18 In particular, an MVE exists; every MVE satisfies the MVT for
all x; and for every MVE, sk(x) −−→

k→∞
m∗(x) for all x.

Although this version of the model represents a setting with different causal relation-
ships between political power, membership, and flow payoffs, it is closely related to the
model from Section 2; indeed, there is a mechanical equivalence between the compo-
nents of both models, and the same tension between current payoffs and future control is
present in both cases.

Other variants, allowing the model to fit new examples, are possible. For instance, the
set of members can affect payoffs directly: vα(x) = uα(x) + wα(I(x)). So long as vα(x)
satisfies Assumptions A1–A4, all of our results apply. A natural example is immigration:
if xt is a country’s immigration policy and I(xt) is its set of citizens, xt does not affect the
payoffs of current citizens directly, but the entry of immigrants does.19

6. DISCUSSION

This section discusses some implications of our analysis.

Myopic Stability of Steady States

Two central results of our analysis are that steady states are myopically stable (or, in
the language of Roberts (2015), “extrinsic”),20 and convergence to a steady state is slow
when agents are patient. In contrast, in other papers in this literature (Roberts (2015),
Acemoglu, Egorov, and Sonin (2008, 2012, 2015)), intrinsic steady states are possible,
and the time it takes to converge to a steady state is uniformly bounded even as δ→ 1.

These papers assume a fixed, finite policy space. Under this assumption, convergence is
fast because there is a mechanical lower bound on the size of policy changes; as a result,
intrinsic steady states must exist for δ high enough, if there are reluctant agents. What we
show is that these results are overturned if arbitrarily small policy changes are allowed.
For a fixed δ < 1, our results also hold if the policy space is finite but fine enough; if we
simultaneously take δ to 1 and make the policy space arbitrarily fine, whether intrinsic
steady states exist depends on the order of limits.

The upshot is that, in practice, whether dynamic concerns can indefinitely stall policy
changes depends not just on the agents’ foresight but also on institutional details that
determine whether incremental changes are possible. For example, take a polity with a

18The proofs of Propositions 3 and 5(iv) assume that pivotal agents never stop receiving payoffs from the
club’s policy. In the main model, this requires them not to leave the club; in this variant, it does not matter if
they are part of the ruling coalition.

19This example has been studied in the literature, although in an overlapping-generations framework (Or-
tega (2005), Suwankiri, Razin, and Sadka (2016)).

20This is true for all 1Es; for all other MVEs in a neighborhood of each stable steady state; and globally for
all MVEs in the model discussed in Section 5, which is closest to this literature.
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POLICY PERSISTENCE AND DRIFT 265

limited franchise considering a franchise extension on the basis of income. Suppose that
each voter prefers a larger franchise than the smallest one she would be in (e.g., for all x,
a voter at the xth income percentile wants to enfranchise everyone above the (x − 5)th
percentile). Then, if it is possible to enfranchise the top y% of the income distribution
for any y , full democracy would eventually be reached through a series of small changes.
However, if voting rights can only be extended based on a few criteria (e.g., only to men
who can read, to landowners, to taxpayers, etc.), indefinite stalling is likely.21

Two important precursors to our analysis, Jack and Lagunoff (2006) and Bai and
Lagunoff (2011), considered dynamic political decision-making with continuous policy
spaces. In particular, Bai and Lagunoff (2011) showed that in their model, steady states
of “smooth” equilibria are also stable when the current decision-maker is assumed to re-
tain power forever (in our setting, this is equivalent to myopic stability). However, their
analysis uses a first-order approach, and so does not extend to other types of equilibria;
moreover, smooth equilibria generically fail to exist, as the second-order conditions are
typically violated.22 We build on this result by showing that steady states must be myopi-
cally stable for all equilibria, including discontinuous ones.

Distribution of Steady States

Although f is the primitive of our model describing the distribution of preferences,
our results are best stated in terms of m, the median voter function. Here, we briefly
discuss the relationship between the two objects, focusing on how the shape of f affects
the location of steady states.

In the quadratic case, or more generally whenever I(x) ≡ (x − d�x + d) is symmetric
around x, the distribution of steady states reflects the following intuition: if f is increasing
within I(x), then m(x) > x, and vice versa. Hence, stable steady states correspond roughly
to maxima of the density function.

REMARK 2: If I(x)= (x− d�x+ d) for all x, and x∗ is a stable (unstable) steady state,
then I(x∗) contains a local maximum (minimum) of f .

In particular, if f is increasing (decreasing) everywhere, there is a unique steady state
close to 1 (−1); if f is symmetric and single-peaked, 0 is the unique steady state. Thus, the
organization always moves to the center if the distribution of preferences is bell-shaped.
Yet, there are three scenarios in which the organization may converge to a policy more
extreme than the bliss points of most voters.

First, even if most voters are near the center, a local maximum near an extreme may
support a stable steady state, especially if d is low.23

REMARK 3: If f ′(x∗) = 0 and f ′′(x∗) < 0, then there is d > 0 such that for all d < d, if
I(x) ≡ (x− d�x+ d) for all x, (x∗ − d�x∗ + d) contains a stable steady state.

Second, even if there is a unique steady state, its location will be unstable when f is
close to uniform. For example, consider the densities f1(x) = 1

2 + εx, f2(x) = 1
2 − εx, and

21Jack and Lagunoff (2006) made the case that franchise extensions are typically gradual processes.
22The existence properties of smooth equilibria are discussed in Appendix D of the Supplemental Material.
23Note that, when there are multiple steady states, which one the organization converges to depends on the

initial policy, that is, there is path-dependence. There is no guarantee that the organization will converge to a
steady state that attracts the most members or maximizes aggregate welfare.
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266 GERMÁN GIECZEWSKI

f3(x) = 1+ε
2 − ε|x|, for a small ε > 0. These are all close to each other (||fi − fj||∞ ≤ 2ε

∀i� j) but f1 has a unique steady state near −1, f2 has one near 1, and f3 has one at 0.
Hence, the long-run policy is potentially discontinuous in f , unlike in models of voting
with a fixed population.

Third, the tendency toward policies preferred by a majority can be easily overturned
when the voter sets I(x) are not symmetric around x. In particular, if agents with extreme
preferences are disproportionately more willing to join the organization, they can capture
it despite being a minority, even locally.24

For example, let the policy space be [−1�1], where −1 is the most moderate policy
and 1 the most extreme, and assume uα(x) = −|α− x| + (1 + α).25 Then α wants to be a
member whenever x ∈ [−1�2α+ 1], whence I(x) = [−1+x

2 �1].
Suppose f is as follows: moderates constitute 60% of the population and have bliss

points uniformly distributed in [−1�−0�9]; extremists, the remaining 40%, have bliss
points uniformly distributed in [−0�9�1]. It can then be shown that the unique steady
state is x∗ = 1

3 > 0. At the steady state policy, the set of members I( 1
3) = [− 1

3 �1] is only
28% of the population, all of them extremists.

7. CONCLUSION

We conclude with a discussion of some issues that the model leaves out, possible exten-
sions, and additional results presented in the Appendix.

Our model focuses on the behavior of a single organization, but organizations often
compete—in particular, the usual assumption in Tiebout competition is that there are
many districts. There are two ways of modeling competition. The first is to assume, as
in the idealized Tiebout model, that districts are identical except for their policies. In
such a model, the same dynamics we have studied would arise, but with the complication
that policy changes in one district may lead to responses by other districts. At the same
time, if there are enough districts, every agent would find a district near her bliss point, so
the potential welfare impact of policy changes in individual districts would vanish as the
number of districts grows.26

An alternative approach is to assume that districts are imperfect substitutes. The ex-
ample in Section 2 of a city with a competitive advantage over others is a version of this,
and it can be generalized. Suppose that there are k > 1 special cities c∗

1 , � � �, c∗
k and k

groups of mobile agents, so that agent types are of the form (α� i), for i ∈ {1� � � � �k}, and
group i’s bliss points are distributed according to a density fi. Assume that u(α�i)(c) =
C1c=c∗

i
− (xt(c) − α)2, that is, agents in group i only value the city c∗

i more than normal
cities. (For instance, agents in group i have immobile relatives in city i.) Our analysis goes
through because each special city c∗

i competes only for agents in group i, and does so only
with normal cities. If i’s value from c∗

j 
= c∗
i is some intermediate C ′ ∈ (0�C), the problem

becomes more complicated, but the relevance of the forces we study does not vanish as
k → ∞. Thus, our model can be taken as an analysis of Tiebout competition in the pres-

24This asymmetry is likely in settings where too-extreme policies are perceived as reprehensible or criminal,
but not the reverse (e.g., fringe political parties, violent protest movements, or advocacy groups whose causes
can be perceived as racist or xenophobic).

25The example is degenerate in that ∂2u
∂α∂x

is only weakly positive and u is only weakly concave in x; this is
only for simplicity.

26Tiebout (1956) conjectured that agents sorting into compatible districts would lead to an efficient outcome.
This idea has been formalized (Wooders (1989)) as well as criticized (Bewley (1981)).
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POLICY PERSISTENCE AND DRIFT 267

ence of imperfect substitutability. A similar logic would apply if cities are ex ante identical
but have ex post market power due to moving costs.27

A related extension would allow for the endogenous creation of organizations. Our
analysis suggests that an agent far from a steady state is less likely to create an organiza-
tion, or more likely to create a non-democratic one.

The organizations we model are simple: all members have the same voting power, de-
cisions are made by majority rule, and votes are cast independently. Appendix E.1 of
the Supplemental Material discusses how to extend our analysis to allow for superma-
jority rules or other electoral rules that make an agent other than the median pivotal.28

However, there is much unexplored complexity regarding the internal structure of orga-
nizations. Agents may have endogenous voting power (seniority); or they may engage in
collective behavior by voting as a bloc, joining an organization in large numbers in or-
der to change its policy, or threatening to leave en masse to extract concessions. These
behaviors are not likely in the context of Tiebout competition, but may be so in other
applications.

Organizations may also set up various barriers to entry or membership restrictions (or,
in the case of cities, there may be moving costs). In the paper, we consider two extreme
cases: one with completely free entry and exit (Section 2) and one in which the organi-
zation can choose its set of members at will (Section 5). In Appendix E.2, we present an
extension allowing for (exogenous) positive entry and exit costs. Because in equilibrium
agents enter and leave the organization at most once, this does not change the analysis
much. Modeling endogenous entry costs that can be chosen separately from the orga-
nization’s main policy, on the other hand, is much harder, as the state space becomes
multidimensional. However, the forces we study will still be present as long as the orga-
nization cannot perfectly control both its payoff-relevant policy and its membership (if it
can, we are back in the world of a fixed decision-maker).

Our analysis abstracts away from history-dependent strategies by focusing on Marko-
vian equilibria. In Appendix E.3, we show that non-Markovian equilibria can support
a large number of outcomes, but that several reasonable refinements select only Marko-
vian equilibria. In particular, any equilibrium obtainable as a limit of discrete policy-space
equilibria must be Markovian.

Finally, we do not explicitly model the organization’s voting process. One way to in-
terpret our results is that they will hold whenever the organization’s collective decision-
making process leads to Condorcet-winning policies being chosen. In Appendix E.4, we
discuss possible microfoundations of this modeling assumption. In particular, the MVEs
we study are Markov Perfect Equilibria of a game in which, in each round of voting, there
are two short-lived, office-motivated candidates engaging in Downsian competition. How-
ever, not all political processes are so well-behaved. For instance, if the organization has
more than two candidates running for office, or it is run by a deliberative decision-making
process, then the Condorcet winner may not win.29 In addition, leaders typically have
some agency in practice. If they are long-lived and have heterogeneous appeal, or are
policy-motivated, they may champion certain policies in an attempt to change the policy

27Moving costs and idiosyncratic preferences are suggested in Tiebout (1956) and Epple and Romer (1991),
respectively, as forces preventing convergence to a Tiebout equilibrium in practice.

28Even in democracies, higher-income agents may wield more political power (Benabou (2000), Jack and
Lagunoff (2006)).

29For example, Bouton and Gratton (2015) showed that Condorcet winners may lose in majority runoff
elections with three candidates.
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268 GERMÁN GIECZEWSKI

path, possibly permanently. Moreover, a politician may strategically push for policies that
will attract a set of members predisposed to like her.30

Appendices B, C, and D contain technical results. Appendix B contains the proofs of
Propositions 6 and 7 and characterizes the case in which no CLS exists. Appendix C shows
that the limit solution described in Appendix B exists for all m satisfying a genericity
condition. Appendix D discusses the existence properties of equilibria other than 1Es (in
particular, smooth equilibria and k-equilibria, a generalization of 1Es); calculates explicit
equilibria for the case of linear m and quadratic utility; and gives an example of an MVE
that is non-monotonic outside of I(x∗).

APPENDIX A: PROOFS

LEMMA 2: Let S = (x0�x1� � � �), T = (y0� y1� � � �) be two policy paths, and let I(S) =⋃∞
n=0 I(xn), I(T) = ⋃∞

n=0 I(yn). Suppose that supxn < inf yn; I(S), I(T) are intervals; and
I(S) ∩ I(T) 
= ∅. Then there is α0 such that agents in [−1�α0) strictly prefer S to T , and
agents in (α0�1] strictly prefer T to S.

PROOF: Let x= infxn, x= supxn, y = inf yn, y = sup yn. By assumption, x ≤ x < y ≤ y .
Note that all agents α < x strictly prefer S to T by Assumptions A4 and A6; likewise, all
α> y strictly prefer T to S.

Let W (α) = Uα(T) − Uα(S). Note that W is continuous and W (x) < 0 < W (y).
Hence there is some α0 ∈ [x� y] for which W (α0) = 0. For any α ∈ [x� y], let I−

S (α) =∑∞
n=0 δ

n1xn≤α�uα(xn)>0, I+
S (α)= ∑∞

n=0 δ
n1xn>α�uα(xn)>0. Define I−

T (α), I
+
T (α) analogously.

If α ∈ [x� y], then I−
S (α) ≥ I−

T (α) = 0 = I+
S (α) ≤ I+

T (α), and I−
S (α) + I+

T (α) > 0 by the
assumption that I(S)∩ I(T) 
= ∅. Then W ′(α) > 0 by Assumption A5.

If α ∈ [y� y], then I+
S (α) = 0, and one of the following must be true. If I−

S (α) ≤ I−
T (α),

then W (α) > 0 by Assumption A4, and moreover, W (α′) > 0 for all α′ ∈ [α�y]. If I−
S (α) >

I−
T (α), then W ′(α) > 0 by Assumptions A2 and A5. Similarly, for each α ∈ [x�x], either
W ′(α) > 0 or W (α′) < 0 for all α′ ∈ [x�α].

In general, then, we can find thresholds z0, z1 such that x ≤ z0 ≤ x < y ≤ z1 ≤ y;
W ′(α) > 0 for all α ∈ [z0� z1]; W (α) < 0 for all α ∈ [x�z0); and W (α) > 0 for all α ∈ (z1� y].
Hence W can vanish at most at one point, so α0 is unique. Q.E.D.

LEMMA 3: In any MVE s, for any y , I(y)∩ I(s(y)) has positive measure. Hence I(S(y))
is an interval for all y .

PROOF: Suppose WLOG y < s(y). We argue that y + d+
y > s(y)− d−

s(y). Suppose this is
false; then all voters in I(y) get utility 0 from policy s(y). If E = {α ∈ I(y) :Uα(S(s(y))) >
0} is a strict majority of I(y), this leads to a contradiction, as all of E would strictly prefer
S(s2(y)) to S(s(y)). Let D = {α ∈ I(y) : Uα(S(s(y))) ≥ Uα(S(y))} ⊆ E. Since S(s(y)) is a
Condorcet winner in I(y), D is a majority in I(y). If I(y)⊆ D, we are done. If not, ∃α0 ∈
I(y)−D. By the continuity of Uα(S(s(y))), ∃α1 such that 0 <Uα1(S(s(y))) < Uα1(S(y)),
and this inequality holds in some neighborhood (α1 −ε�α1 +ε). Hence E−D has positive
measure and E is a strict majority of I(y). Q.E.D.

30Glaeser and Shleifer (2005) discussed the case of Mayor Curley of Boston, who used wasteful policies in
an effort drive out rich citizens of English descent, as he was most popular among the poor Irish population.
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POLICY PERSISTENCE AND DRIFT 269

COROLLARY 2: In any MVE, let S = S(y) for some y < x and T = (x�x� � � �), with
sup(S) ≤ x. Then there is α0 ≤ x such that agents in [−1�α0) strictly prefer S to T , and
agents in (α0�1] strictly prefer T to S.

PROOF: If I(S) ∩ I(x) 
= ∅, this follows directly from Lemmas 2 and 3. If not, then all
α≥ x− d−

x strictly prefer T to S and all α≤ sup I(S) strictly prefer S to T . Let α′
0 be such

that uα′
0
(y) = uα′

0
(x) < 0. If α′

0 ∈ (sup I(S)�x − d−
x ), then take α0 = α′

0. If α′
0 ≤ sup I(S),

then take α0 = I(S). If α′
0 ≥ x− d−

x , take α0 = x− d−
x . Q.E.D.

PROOF OF PROPOSITION 1: Suppose S(y) is not monotonic. For this proof, denote sk =
sk(y), Sk = S(sk), Ik = I(sk), y = inf(S(y)), and y = sup(S(y)). For brevity, we will say α

prefers a policy x to a path S if she prefers (x�x� � � �) to S. There are two cases:
Case 1: S(y) attains y or y , that is, ∃k ∈ N such that sk = y or sk = y . Suppose WLOG

the former. Then there is a k ∈ N such that sk−1 < y , sk = y , and sk+1 < y .31 Consider the
decision made by voters in Ik−1 and in Ik. Since Sk is the Condorcet winner in Ik−1, a
majority of Ik−1 prefer it to Sk+1. At the same time, Sk+1 is Condorcet-winning in Ik, so a
majority of Ik prefer Sk+1 to Sk. Let A = (sk−1 − d−

k−1� sk − d−
k ), B = (sk − d−

k � sk−1 + d+
k−1),

C = (sk−1 + d+
k−1� sk + d−

k ). Note that α prefers Sk to Sk+1 iff he prefers sk to Sk+1. Apply
Corollary 2. If α0 ∈ C, all voters in A ∪ B strictly prefer Sk+1 to Sk, a contradiction. If
α0 ∈ B, all voters in A strictly prefer Sk+1 to Sk and all voters in C strictly prefer Sk to
Sk+1, a contradiction.

Case 2: S(y) never attains its infimum nor its supremum. Then there must be a sub-
sequence (ski)i such that ski −→

i→∞
y . Construct a sub-subsequence skij such that skij −→

j→∞
y

and skij −1 −→
j→∞

s−1
∗ for some limit s−1

∗ ≤ y . (We can do this because all the sk are in [−1�1],
which is compact.) Iterating this, construct a nested list of subsequences ((skim)i)m such
that kim is increasing in i for each m; Km = {kim : i ≥ 0} ⊇ Km′ for m<m′; and, for each
m, skim+r −→

i→∞
sr∗ for any r ∈ {−m� � � � �m}, where s0

∗ = y . Let gi = kii. Then (sgi)i is a subse-

quence of (sk)k such that sgi+r −→
i→∞

sr∗ for any r ∈ Z. We now consider four sub-cases.

Case 2.1: Suppose sr∗ < y for some r < 0 and for some r ′ > 0, and let r < 0 < r be the
numbers closest to 0 satisfying these conditions. Consider the decisions made by Igi+r and
Igi+r−1, for high i. In the limit, they imply that a majority in I(sr∗) prefers y to S̃(sr∗), while
a majority in I(y) prefers S̃(sr∗) to y (denoting S̃(sr∗) = (sr∗� s

r+1
∗ � � � �)). As in Case 1, this

contradicts Corollary 2.
Case 2.2: Suppose sr∗ < y for some r < 0 but never for r > 0. Take r maximal, so sr∗ < y

and sr∗ = y ∀r > r. Fix 0 < ν < y − sr∗. For each i, let r ′(i) be such that sgi+r′(i) is the first
element of the sequence (sk)k after sgi+r that is weakly smaller than sr∗ + ν. Construct a
subsequence (sgij )j such that sgij +r′(ij )+l → sl∗∗ for l ≥ −1 (in particular, s−1

∗∗ ≥ sr∗ + ν ≥ s0
∗∗).

Now compare the decisions made by I(sgi+r) and I(sgi+r′(i)−1). In the limit, they imply that
a weak majority in I(sr∗) prefers y to S̃(s0

∗∗), while a weak majority in I(s−1
∗∗ ) prefers the

opposite (here S̃(s0
∗∗)= (s0

∗∗� s
1
∗∗� � � �)). This contradicts Corollary 2.

Case 2.3: Suppose sr∗ < y for some r > 0 but never for r < 0. Take r minimal, so sr∗ < y
and sr∗ = y ∀r < r. Fix 0 < ν < y − sr∗. Let r ′

ν(i) be such that sgi+r′ν(i) is the last element
before sgi that is weakly smaller than y − ν. Clearly, r ′

ν(i)−→
i→∞

−∞.

31The same argument would apply if sk(y) = · · · = sk+m(y) > sk−1(y)� sk+m+1(y).
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270 GERMÁN GIECZEWSKI

Consider the choice made by I(sgi+r−1). In the limit, a majority in I(y) prefers
(sr∗� s

r+1
∗ � � � �) over y . Apply Corollary 2. Clearly, α0 < y , so m(y) ≤ α0 < y . As m is

strictly increasing, mk(y) is strictly decreasing in k and converges to a limit m̃; more-
over, m(y) < y for all y ∈ (m̃� y]. Call gi + r ′

ν(i) = hiν and let sν∗ = lim infi→∞ shiν . Let
s∗∗ = lim infν→0 s

ν
∗ . If s∗∗ < y , take a sequence of ν, hiν such that shiν → s∗∗. By construction,

shiν+l ≥ y − ν for l = 1� � � � �L for L arbitrarily large as ν → 0, hiν → ∞. Then, in the limit,
y is a Condorcet winner in I(s∗∗); in particular, a majority prefers y to (sr∗� s

r+1
∗ � � � �), which

contradicts Corollary 2.
If s∗∗ = y , we must work away from the limit. Take ε > 0 such that (y − d−

y + ε� y −
ε) ⊆ I(y − υ) is a strict majority of I(y − υ) for all 0 < υ ≤ ε.32 Take a fixed ν′ < ε; a
ν < ν′ such that sν∗ ≥ y − ν′; and a subsequence sfi of shiν such that sfi → sν∗ . Let Mi be the
largest integer such that sfi+l ∈ (y − ν� y) for l = 1� � � � �Mi and Ki the set of l ∈ 1� � � � �Mi

such that sfi+l ∈ (y − ν
2 � y). Let ki = min(Ki). By construction, Mi� |Ki| → ∞. Then, for

α ∈ (y − d−
y + ε� y − ε),

1
1 − δ

uα(sfi)−Uα

(
S(sfi+1)

)

=
∑
t∈Ki

δt−1
(
uα(sfi )− uα(sfi+t)

)

+
∑

Mi≥t /∈Ki

δt−1
(
uα(sfi)− uα(sfi+t)

) +
∑
t>Mi

δt−1
(
uα(sfi )− 1α∈I(sfi+t )uα(sfi+t)

)

≥ δki−1
(
uα(sfi)− uα(sfi+ki)

) + 0 − δMi

1 − δ
C = δki−1

(
uα(sfi)− uα(sfi+ki)− δ|Ki |

1 − δ
C

)
�

where C = maxα uα(α). Note that uα(sfi ) − uα(sfi+ki) ≥ usfi
(sfi ) − usfi

(sfi+ki) + M ′(sfi −
α)(sfi+ki − sfi ) ≥ M ′(sfi − y + ε)ν

2 , which converges to M ′(sν∗ − y + ε)ν
2 ≥ M ′ ν

2(ε− ν′) > 0
as i → ∞. On the other hand, δ|Ki| → 0 as i → ∞. Hence all α ∈ (y −d−

y +ε� y −ε) prefer
sfi to S(sfi+1) for high i, so S(sfi+1) is not a Condorcet winner in I(sfi ), a contradiction.

Case 2.4: sr∗ = y for all r. In other words, the sequence spends arbitrarily long times
near y and y (if not true for both boundaries, one of the former cases applies). We first
prove the following claim: m(y)= y for all y ∈ [y� y].

Take any y0 ∈ (y� y). Take a sequence (hi)i such that, for each i, shi is the last element
of the sequence (sk)k before sgi such that sk ≤ y0. Intuitively, shi is the last element of
the sequence below y0 before the sequence goes near y for a long time. Take a diagonal
subsequence (ski) of (shi) such that ski+l has a limit sl∗∗ for all i. Clearly s0

∗∗ ≤ y0 and sl∗∗ ≥ y0

for all l > 0.
Consider the choice made by I(ski). If s0

∗∗ < y0, in the limit, a majority in I(s0
∗∗)

prefers (s1
∗∗� s

2
∗∗� � � �) over s0

∗∗. Apply Corollary 2. Clearly m(s0
∗∗)≥ α0 > s0

∗∗, so um(s0∗∗)(s
0
∗∗)≤

um(s0∗∗)(y0). If s0
∗∗ = y0, then m(y0) < y0 leads to a contradiction by an analogous argu-

ment as in Case 2.3, so we must have m(y0)≥ y0. Conversely, considering sequences going
near y for arbitrarily long, we obtain that either m(y0) ≤ y0 or there is s̃0

∗∗ > y0 such that
m(s̃0

∗∗) < s̃0
∗∗ and um(s̃0∗∗)(s̃

0
∗∗)≤ um(s̃0∗∗)(y0).

For each y ∈ (y� y) such that y 
=m(y), define ŷ 
= y to be such that um(y)(y)= um(y)(ŷ).
Take y0 such that |y0 − ŷ0| is maximal. WLOG m(y0) < y0, so there is s0

∗∗ < y0 such that

32ε exists because m(y) < y and y − d−
y , y + d+

y are continuous in y .
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POLICY PERSISTENCE AND DRIFT 271

m(s0
∗∗) > s0

∗∗ and um(s0∗∗)(s
0
∗∗) ≤ um(s0∗∗)(y0). Since m(y0) >m(s0

∗∗), um(y0)(s
0
∗∗) < um(y0)(y0), so

ŷ0 > s0
∗∗; but ŝ0

∗∗ ≥ y0. Hence |s0
∗∗ − ˆs0∗∗|> |ŷ0 − y0|, a contradiction.

For the case where m(y)= y for all y ∈ [y� y], we use the following lemma.

LEMMA 4: Let S = (y� y� � � �), and let T = (xn)n 
= S. If x and x′ both prefer T to S, and
x < y < x′, then x /∈ I(x′) or x′ /∈ I(x).

PROOF: Suppose that x ∈ I(x′) and x′ ∈ I(x). It is enough to check the case where T is
contained in [x�x′]: if not, define a path (x̃n)n by x̃n = min(max(xn�x)�x

′). Then (x̃n)n is
contained in [x�x′] and is weakly better for both x and x′ than T .

By assumption, both x and x′ derive nonnegative utility from all elements of T . Let
x = (1 − δ)

∑
n δ

nxn, and T ′′ = (x�x� � � �). If T ′′ 
= T , both x and x′ strictly prefer T ′′ to
T by Jensen’s inequality and Assumption A4. Hence they both strictly prefer x to y , a
contradiction. If T ′′ = T , x 
= y and both agents prefer x to y , a contradiction. Q.E.D.

Take ε > 0, ν > 0 small and y0 = y + ε. Construct ski as before. It follows from previous
arguments that s0

∗∗ = y0. For all i, a majority in I(ski) must prefer S(ski+1) over ski . Since
ski strictly prefers ski over S(ski+1) and ski = m(ski), this can only happen if there are
voters both above and below ski who prefer S(ski+1). Let y ′

i < ski < y ′′
i be the closest voters

to ski who weakly prefer S(ski+1), and denote y ′
i − (ski − d−

ski
) = η′

i, y
′′
i − ski = η′′

i . Note
that η′

i�η
′′
i −→

i→∞
0.33 In addition, y ′′

i − d−
y′′
i
> y ′

i ; otherwise we obtain a contradiction as in

Lemma 4. Let ỹi be such that ỹi − d−
ỹi

= y ′
i .

Given the path T i = S(ski+1), construct T ′ i as follows. If T i
j ≥ y ′′

i + ν, T ′ i
j = y ′′

i + ν. If

y ′′
i + ν > T i

j ≥ ỹi, T ′ i
j = y ′′

i . If ỹi > T i
j ≥ ski , T

′ i
j = zi =

∑
ỹi>T i

j
≥ski

δjT i
j∑

ỹi>T i
j
≥ski

δj
. If ski > T i

j , T ′ i
j = vi =

∑
ski

>T i
j
δjT i

j∑
ski

>T i
j
δj

. Then both y ′
i and y ′′

i weakly prefer T ′ i over T i. Moreover, T ′ i is a linear combi-

nation of at most four policies; by an abuse of notation, T ′ i = ωi
1[y ′′

i ]+ωi
2[y ′′

i +ν]+ωi
3[zi]+

ωi
4[vi] with

∑
j ω

i
j = 1. In addition, since S(ski+1) spends a long time near y (hence above

y ′′
i + ν) before going back under ski ,

ωi
4

ωi
2
−→
i→∞

0.34

Finally, take 0 <ωi
5 ≤ ωi

4 such that ωi
3zi + ωi

5vi = (ωi
3 + ωi

5)ski ,
35 and construct T ′′′ i =

ωi
1[y ′′

i ] +ωi
2[y ′′

i + ν] + (ωi
3 +ωi

5)[ski] + (ωi
4 −ωi

5)[vi], T ′′ i = wi
1[y ′′

i ] +wi
2[y ′′

i + ν] +wi
3[vi],

where wi
1 = ωi

1
ωi

1+ωi
2+ωi

4−ωi
5
, wi

2 = ωi
2

ωi
1+ωi

2+ωi
4−ωi

5
, wi

3 = ωi
4−ωi

5
ωi

1+ωi
2+ωi

4−ωi
5
, and wi

3
wi

2
−→
i→∞

0. Then both y ′
i

and y ′′
i weakly prefer T ′′ i over T i and hence over ski . Then, for some C�c > 0,

Cwi
3 ≥wi

3uy′
i
(vi)≥ uy′

i
(ski)= uy′

i
(ski)− uy′

i−η′
i
(ski)= η′

i

∂uα̃(ski)

∂α
≥ cη′

i�

uy′′
i
(ski) ≤wi

1uy′′
i

(
y ′′
i

) +wi
2uy′′

i

(
y ′′
i + ν

) +wi
3uy′′

i
(vi)

≤ (
wi

1 +wi
2

)
uy′′

i

(
y ′′
i + wi

2ν

wi
1 +wi

2

)
+wi

3uy′′
i
(ski)�

33η′
i → 0 by a similar argument to Case 2.3. Then, if η′′

i did not converge to zero, (y ′
i � y

′′
i ) would be a strict

majority in I(ski ) for large i, a contradiction.
34For these arguments to work, we take ν, ε small enough that y0 + ν < y and uy0(y) > 0.
35If this is not possible, then y ′

i could not have preferred T ′ i over ski , a contradiction.
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272 GERMÁN GIECZEWSKI

uy′′
i

(
y ′′
i −η′′

i

) = uy′′
i
(ski)≤ uy′′

i

(
y ′′
i + wi

2ν

wi
1 +wi

2

)
≤ uy′′

i

(
y ′′
i +wi

2ν
)
�

As Assumptions A2 and A4 imply uα(α)− uα(α− x) ∈ [M ′
2 x2� M

2 x
2], this means

M

2
(
η′′

i

)2 ≥ M ′

2
(
wi

2ν
)2 =⇒ η′′

i

η′
i

≥
√
M ′

M

c

C

wi
2

wi
3

ν�

Since (y ′
i � y

′′
i ) cannot be a strict majority in I(ski), we must have F(y ′′

i )− F(ski)≤ F(y ′
i)−

F(ski − d−
ski
) for all i. But this is impossible as f (x)

f (x′) is bounded and η′′
i

η′
i
−→
i→∞

∞, a contradic-

tion. Q.E.D.

PROOF OF PROPOSITION 2: Suppose m(y) = y and s(y) 
= y; WLOG s(y) < y . A ma-
jority in I(y) must prefer S(s(y)) to S(y), that is, they must prefer S(s(y)) to y . By Propo-
sition 1, sk(y) ≤ s(y) for all k. But then, for small enough ε > 0, all agents in (y−ε� y+d+

y )
strictly prefer y to S(s(y)), a contradiction.

If m(y) 
= y , suppose WLOG that m(y) < y . If s(y) > y , then sk(y) ≥ s(y) > y for
all k, so all voters in (y − d−

y � y) (a strict majority in I(y)) strictly prefer y to S(s(y)),
a contradiction. Hence s(y) ≤ y . On the other hand, suppose s(y) < m∗(y). Note that
m∗(y) < m(y); m(m∗(y)) = m∗(y); sk(y) ≤ s(y) for all k; and choosing m∗(y) leads to
the policy path (m∗(y)�m∗(y)� � � �) by the previous case. Then, for small enough ε > 0,
all voters in (m(y) − ε� y + d+

y ) prefer S(m∗(y)) over S(s(y)), a contradiction. Hence
s(y) ≥ m∗(y). Next, suppose s(y) = m∗(y) and consider T = (m(y)� s(m(y))� � � �). Since
T is contained in [m∗(y)�m(y)] and T1 = m(y) > m∗(y), all voters in (m(y) − ε� y + d+

y )
for small ε > 0 strictly prefer T over S(s(y)), a contradiction. Hence s(y) >m∗(y).

We now show that, if the MVT holds on [m∗(y)� y], then s(y) < y . Suppose that s(y)=
y . There must be ε0 such that s(y − ε) < y − ε for all 0 < ε < ε0 (otherwise, m(y) would
prefer the constant path (y − ε� y − ε� � � �) to (y� y� � � �) for ε small enough).

Let s−(y) = lim infε→0 s(y − ε) ∈ [m∗(y)� y]. There are two cases: s−(y)= y and s−(y) <
y . If s−(y)= y , then sk(x)→ y as x→ y for all k. For all x ∈ (y −ε0� y), m(x) must prefer
S(s(x)) to x. That is, denoting W (x) = (1 − δ)Um(x)(S(s(x))) − um(x)(x), we must have
W (x) ≥ 0. Equivalently,

(1 − δ)

kx∑
t=0

δtum(x)

(
st+1(x)

) − um(x)(x) ≥ 0�

where kx = max{k : m(x) ∈ I(sk(x))} − 1. (Note that kx −→
x→y

∞.) By the envelope theo-
rem,

W ′(x)= (1 − δ)
∂

∂α
Um(x)

(
S
(
s(x)

))
m′(x)− d

dx
um(x)(x)

=
kx∑
t=0

(1 − δ)δt

(
∂

∂α
um(x)

(
st+1(x)

) − ∂u

∂α

)
m′(x)− (

1 − δkx+1
)∂u
∂x

− δkx+1du

dx
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POLICY PERSISTENCE AND DRIFT 273

≥
kx∑
t=0

δt
(−M

(
x− st+1(x)

))
m′(x)− (

1 − δkx+1
)∂u
∂x

− δkx+1du

dx

−→
x→y

− ∂

∂x
um(y)(y) > 0�

where u stands for um(x)(x) unless otherwise noted. Thus, W (x) ≥ 0 and W ′(x) > 0 for all
x ∈ (y − ε1� y), whence W (y) > 0, which contradicts s(y)= y .

If s−(y) < y , let (yn)n be a sequence such that yn < y ∀n, yn → y and, for all t, st(yn)
converges to a limit st as n → ∞ (in particular, s1 = s−(y)). By construction, m(y) must
prefer y to S(s(yn)) for all n. We now aim to show that

Um(y)

(
S
(
s(yn)

)) − 1
1 − δ

um(y)(y)

y − yn
−−→
n→∞

0�

m(yn) prefers S(s(yn)) to y for all n. By continuity, m(y) is indifferent between y and
(st)t . Moreover, m(yn) prefers S(s(yn)) to all other S(s(yn′)), hence to (st)t . Thus,

0 ≥Um(y)

(
S
(
s(yn)

)) − 1
1 − δ

um(y)(y)=Um(y)

(
S
(
s(yn)

)) −Um(y)

(
(st)t

)

≥Um(y)

(
S
(
s(yn)

)) −Um(y)

(
(st)t

) +Um(yn)

(
(st)t

) −Um(yn)

(
S
(
s(yn)

)) =
∞∑
t=0

δtAtn�

where, denoting vα(x)= max(uα(x)�0),

Atn = vm(y)

(
st+1(yn)

) − vm(y)(st+1)+ vm(yn)(st+1)− vm(yn)

(
st+1(yn)

)
�

Let Btn = Atn

y−yn
. Then it is sufficient to show that Btn is uniformly bounded (i.e., ∃B such

that |Btn| ≤ B for all t, n) and that, for all t, lim infn→∞ Btn ≥ 0.
We first prove the boundedness. Using that |max(a�0)− max(b�0)| ≤ |a− b|,

Atn ≤ |Atn|
≤ ∣∣um(y)

(
st+1(yn)

) − um(yn)

(
st+1(yn)

)∣∣ + ∣∣um(yn)(st+1)− um(y)(st+1)
∣∣

≤ 2m′ max
α�x

[
∂uα(x)

∂α

]
(y − yn)�

where m′ = m′(x). Next, we prove that lim infn→∞ Btn ≥ 0. There are four cases. First,
if um(y)(st+1) > 0, then there is n0 such that, for all n ≥ n0, um(y)(s

t+1(yn)), um(yn)(st+1),
um(yn)(s

t+1(yn)) > 0. For all such n, by Assumption A2, there is M̃tn ∈ [M ′�M] such that
Atn = M̃tn(s

t+1(yn)− st+1)(m(y)−m(yn)), so |Btn| −−→
n→∞

0. Second, if um(y)(st+1) < 0, then

for all large enough n, Atn = 0. Third, if um(y)(st+1) = 0 and st+1(yn) ≥ st+1, all the terms
are positive and we use the same argument as in case 1. Fourth, if um(y)(st+1) = 0 and
st+1(yn) < st+1, then um(yn)(st+1) > um(yn)(s

t+1(yn)) and vm(y)(st+1) = vm(y)(s
t+1(yn)) = 0, so

Bnt ≥ 0.
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274 GERMÁN GIECZEWSKI

Consider now the possibility of m(y) choosing S(yn) instead. We can see that

(1 − δ)Um(y)

(
S(yn)

) − um(y)(y)

= (1 − δ)
(
um(y)(yn)− um(y)(y)

) + δ
(
(1 − δ)Um(y)

(
S
(
s(yn)

)) − um(y)(y)
)

= (1 − δ)(yn − y)
∂um(y)(ỹ)

∂x
+ o(y − yn)

for some ỹ ∈ [yn� y]. Since ∂um(y)(ỹ)

∂x
−−→
n→∞

∂um(y)(y)

∂x
< 0, the above expression is positive for

high n, so s(y)= y is not optimal for m(y), a contradiction.
Finally, we show that sk(y) converges to m∗(y). Since sk(y) ∈ [m∗(y)� y] for all y and the

sequence (sk(y))k is decreasing, it has a limit s∗ ∈ [m∗(y)� y). Suppose s∗ >m∗(y). Then
m(s∗) < s∗, so there is k0 such that m(sk(y)) < s∗ for all k ≥ k0. For such k, m(sk(y))
would strictly prefer S(sk+2(y)) to S(sk+1(y)), a contradiction. Q.E.D.

PROOF OF COROLLARY 1: Let x∗
i < x∗

i+1 be consecutive fixed points of m. Since m is
continuous, either m(y) > y ∀y ∈ (x∗

i � x
∗
i+1) or m(y) < y for all such y . The first case

implies m′(x∗
i ) ≥ 1 and m′(x∗

i+1) ≤ 1, and vice versa; since m′(x∗
j ) 
= 1, these inequalities

are strict, which implies that the intervals must alternate.
A fixed point of m is stable if m′(x∗) < 1 and unstable if m′(x∗) > 1 (see, e.g., Elaydi

(2005), Chapter 1.5). Since m(−1) > −1 and m(1) < 1, x∗
1 and x∗

n are both stable, and
stable and unstable fixed points alternate in between. Q.E.D.

PROOF OF PROPOSITION 3: We first prove the monotonicity. Fix ε > 0 small. Let x <
y ∈ [x∗�x∗ + ε], where m(x∗) = x∗, m(x∗∗) = x∗∗, m(y) < y for all y ∈ (x∗�x∗∗) and ε <
x∗∗ −x∗. Call sk(x) = xk, sk(y)= yk and suppose x1 > y1. Then S(x1) is preferred to S(y1)
by a majority in I(x), and the opposite happens in I(y). Since all agents in I(y)− I(x) =
(x+d+

x � y+d+
y ] prefer S(x1) due to Assumption A6, there must also be z0 ∈ I(x)−I(y) =

[x − d−
x � y − d−

y ) that prefers S(x1) (in fact, there must be enough of them, but we only
need one).

Let l be such that xi > yi for i = 1�2� � � � � l but not for i = l+1. If xl+1 = yl+1 (and hence
S(xl+1) = S(yl+1)), we have a contradiction, as any z0 ∈ I(x) − I(y) would prefer S(y1)
to S(x1) pointwise. By a similar argument, there must be zl ∈ I(yl) − I(xl) that prefers
S(yl+1) to S(xl+1). If xi < yi for all i ≥ l + 1, this also yields a contradiction, as any such
zl would prefer S(xl+1) over S(yl+1) pointwise. More generally, if the ordering between xl

and yl only changes a finite number of times, we can obtain a contradiction by looking at
the last change. The only case left to consider is if there are arbitrarily high i’s and j’s for
which xi > yi and xj < yj . If so, note that

0 ≤Uz0

(
S(x1)

) −Uz0

(
S(y1)

)

=
l−1∑
t=0

δt
(
uz0(x1+t)− uz0(y1+t)

) +
∑
t≥l

δt
(
uz0(x1+t)− uz0(y1+t)

)

− ∂uz0(x)

∂x

∣∣∣∣
x∗

l−1∑
t=0

δt(x1+t − y1+t)

≤
l−1∑
t=0

δt
(
uz0(y1+t)− uz0(x1+t)

) ≤
∑
t≥l

δt
(
uz0(x1+t)− uz0(y1+t)

)
�
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POLICY PERSISTENCE AND DRIFT 275

(Note that z0 gets positive utility from all policies in S(x1) and S(y1).) Then

0 ≤ Uzl

(
S(yl+1)

) −Uzl

(
S(xl+1)

)

=
∑
t≥l

δt−l
(
uzl(y1+t)− uzl(x1+t)

) − ∂uz0(x)

∂x

∣∣∣∣
x∗

l−1∑
t=0

δt(x1+t − y1+t)

≤
∑
t≥l

δt
(
uz0(x1+t)− uzl(x1+t)− uz0(y1+t)+ uzl(y1+t)

) − ∂uz0(x)

∂x

∣∣∣∣
x∗

l−1∑
t=0

δt(x1+t − y1+t)

≤
∑
t≥l

δtM(z0 − zl)|x1+t − y1+t| − ∂uz0(x)

∂x

∣∣∣∣
x∗

max
0≤t≤l−1

{|x1+t − y1+t|
}

≤ 1
1 − δ

M(z0 − zl) sup
t≥l

{|x1+t − y1+t |
}(−∂uz0(x)

∂x

∣∣∣∣
x∗

)
1 − δ

M(z0 − zl)
max

0≤t≤l−1

{|x1+t − y1+t|
}

≤ sup
t≥l

{|x1+t − y1+t|
}
�

Since z0 − zl ≤ ε− d−
x∗+ε + d−

x∗ −−→
ε→0

0, by taking ε small enough, we can guarantee

D max
0≤t≤l−1

{|x1+t − y1+t|
} ≤ sup

t≥l

{|x1+t − y1+t|
}

for a fixed D> 2 (we can take D arbitrarily large). Take t0 = arg max0≤t≤l−1{|x1+t − y1+t |}
and t1 the smallest t ≥ l for which |x1+t1 − y1+t1 | ≥ 2|x1+t0 − y1+t0 |. We can apply the same
argument to obtain t2 such that |x1+t2 − y1+t2 | ≥ 2|x1+t1 − y1+t1 |, and so on for t3, etc. Then,
for large enough j, |x1+tj − y1+tj |> x∗∗ − x∗, a contradiction.

This argument proves (i) for an interval [x∗�x∗ + ε). Now let

x̂ = inf
{
x̃ : s is not monotonic on

[
x∗� x̃

]} ≥ x∗ + ε�

Suppose WLOG that x∗∗ > m−1(x∗ + d+
x∗). We will now show that x̂ ≥ m−1(x∗ + d+

x∗) >
x∗ + d+

x∗ . Suppose x̂ < m−1(x∗ + d+
x∗).

By construction, for any ε > 0, there must be pairs xε, yε such that xε < yε, s(xε) >
s(yε), and xε� yε ∈ (x̂− ε� x̂+ ε). There are two cases. If there are arbitrarily small ε for
which sk(xε)� sk(yε) ≥ x̂ for all k, and moreover limk→∞ sk(xε) = limk→∞ sk(yε) ≥ x̂, then
we obtain a contradiction by repeating our previous argument. Else we are able to pick xε

and yε so that, in addition to the above conditions, sk(xε) > sk(yε) for all k ≥ 1.36 Label
sk(xε)= xk, sk(yε)= yk.

A majority in I(y0) must prefer S(y1) to S(x1), and a majority in I(x0) must prefer S(x1)
to S(y1). Then some z0 ∈ I(x0)− I(y0) prefers S(x1) to S(y1). Assumption A2 implies that
all z ∈ [z0�x

∗ +d+
x∗ ] strictly prefer S(x1) to S(y1). For ε small enough, m(I(y0)) < x∗ +d+

x∗ ,
so a strict majority in I(y0) prefers S(x1) to S(y1), a contradiction.

Next, we prove that the MVT must hold. Let y ∈ I(x∗) ∩ [x∗�x∗∗) and suppose m(y)
strictly prefers S(y ′) to S(s(y)), where y ′ < s(y). Since s is increasing in I(x∗) ∩ [x∗�x∗∗),
sk(y ′) ≤ sk(s(y)) for all k, so by Assumption A2, all voters x < m(y) prefer S(y ′) to

36If eventually sk(xε) < x̂, or sk(xε) and sk(yε) converge to different limits, the inequality sk(xε)≶ sk(yε)
can only flip finitely many times as k grows, and we can look at the last time it flips.
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276 GERMÁN GIECZEWSKI

S(s(y)). Some voters x > m(y) close to m(y) also prefer S(y ′) by continuity. Hence
S(s(y)) is not a Condorcet winner in I(y), a contradiction. Next, suppose s(y) < y ′ ≤ y .
Then all voters in [m(y)�x∗ + d+

x∗ ] prefer S(y ′) by Assumption A2, and some voters
x < m(y) prefer S(y ′) by continuity. On the other hand, voters x ∈ (x∗ + d+

x∗� y + d+
y ]

prefer S(y ′) to S(s(y)) because x ≥ y and sk(y ′) ≥ sk(s(y)) for all k. Hence s(y) is not a
Condorcet winner in I(y), a contradiction.

For the existence, it is enough to prove existence of MVE for the model in Section 5.37

For this, we refine an incomplete argument given in Acemoglu, Egorov, and Sonin (2015)
(Theorem B3). Briefly, for any finite policy space X ⊆ [−1�1], an MVE can be found
by backward induction, and its monotonicity can be proved as above. Take a sequence
of finite spaces X1 ⊆ X2 ⊆ · · · such that

⋃
i∈NXi is dense in [−1�1], and take an MVE

s̃i : Xi → Xi for each. Let si be a monotonic extension of s̃i to [−1�1]. By a diagonal
argument, abusing notation, find a subsequence (sj)j such that (sj(x))j converges at every
element of

⋃
i∈NXi. (sj(x))j must in fact converge at all but countably many points, so

we can find a subsequence that converges for all x. Denote the limit by s̃. This is the
construction from Acemoglu, Egorov, and Sonin (2015). But s̃ need not be an MVE, as
there is no guarantee that S̃(s̃(y))= limj→∞ Sj(sj(y)) if s̃ is not continuous.

Say S = (xt)t is an optimal path for y if there is a sequence yj → y such that Sj(sj(yj))→
S (i.e., stj(yj)−−→

j→∞
xt ∀t). Denote by S(y) the set of y ’s optimal paths. Then it can be shown

that the elements of S(y) are ordered for each y; if S ∈ S(y) and S′ ∈ S(y ′), with y > y ′,
then S ≥ S′; and, if Sj ∈ S(yj) ∀j, yj → y , and Sj → S, then S ∈ S(y). In addition, for any
(x0�x1� � � �) ∈ S(y), (x1� � � �) ∈ S(x0). Moreover, (x1� � � �) must be the maximal element
of S(x0), that is, it must be limyj↘x0 min(S(yj)). Indeed, m(x0) is indifferent between all
elements of S(x0); by Assumption A2, m(y) strictly prefers the maximal one. Then, if
(x1� � � �) is not the maximal element, m(y) would deviate to x0 + ε for ε > 0.

Define then s by s(y) = infy′>y s̃(y
′). We can show by induction on t that S(s(y)) =

max(S(y)), and from there that s constitutes an MVE. Q.E.D.

PROOF OF PROPOSITION 4: Let t0 = min{t : st(x) ≤ y}. By Proposition 1, st(x) ≤
st0(x) ≤ y for all t ≥ t0. A majority of I(x) must prefer S(s(x)) to S(x). Then, by Corollary
2, m(x) must have this preference:

um(x)(x)

1 − δ
≤Um(x)

(
S
(
s(x)

)) ≤ 1 − δt0

1 − δ
um(x)

(
m(x)

) + δt0

1 − δ
max

(
um(x)(y)�0

)
�

δt0 ≤ um(x)

(
m(x)

) − um(x)(x)

um(x)

(
m(x)

) − max
(
um(x)(y)�0

) �

t0
1 − δ

δ
≥ t0 ln

(
1
δ

)
≥ ln

(
um(x)

(
m(x)

) − max
(
um(x)(y)�0

)
um(x)

(
m(x)

) − um(x)(x)

)
=: K(y)�

Q.E.D.

PROOF OF PROPOSITION 5: Parts (i) and (iii) follow from the arguments given in the
text plus Lemma 2.

37Any such MVE is also an MVE of the main model within I(x∗) ∩ [x∗�x∗∗). The reason is that any such
MVE is monotonic and satisfies the MVT everywhere, that is, ∀y� y ′, m(y) prefers S(s(y)) to S(y ′). m(y)
then also prefers S(s(y)) to all S(y ′) in the main model if y ∈ I(x∗). By the monotonicity, and combining
Assumptions A2 and A6, the sets of voters in I(y) preferring S(s(y)) to S(y ′) or vice versa are both intervals,
so a majority prefers S(s(y)) iff m(y) does.
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POLICY PERSISTENCE AND DRIFT 277

For part (ii), we first construct a sequence of approximate Q1Es as follows. For each
i = 1�2� � � �, let ε(i) = 1

i
and take y1, y2 such that x∗ < y1 < y2 < x∗ + ε(i) and such that,

moreover, um(y2)(y2) < um(y2)(y1). Define x̃ik = y1 for all k > 0 and x̃i0 = y2. Then, for
k = −1�−2� � � �, define x̃ik such that m(x̃ik) is indifferent between the policy x̃i(k+1) and
the path (x̃i(k+2)� x̃i(k+3)� � � �). (We can show by induction that x̃ik is uniquely defined and
strictly decreasing in k for all k < 0, by Corollary 2.) Let s̃i denote the associated successor
function, that is, s̃i(y)= x̃i(k+1) for all y ∈ [x̃ik� x̃i(k−1)).

We now make some useful observations. First, s̃i satisfies all the conditions to be a Q1E
for k < 0. Indeed, m(x̃ik) is indifferent between S(x̃i(k+1)) and S(x̃i(k+2)) by construction;
by Assumption A2 and Corollary 2, she prefers these policy paths to any other S(x̃ik′).
Second, it can be shown by induction that x̃ik(y1� y2) is a continuous function for all k <
0. Third, x̃ik ≤ m−1(x̃i(k+1)) for all k < 0; in particular, x̃ik ≤ mk(x̃i0) = mk(y2). Fourth,
x̃ik −−−→

k→−∞
x∗∗.38

Next, we argue that y1, y2 can be chosen so that some element of the sequence (x̃ik)k
equals x. For an arbitrary initial choice of y1, y2 satisfying the requirements above, let
k0 be such that x > x̃ik0 . Now lower (y1� y2) continuously toward x∗ while satisfying the
conditions that x∗ < y1 < y2 < x∗ + ε(i) and um(y2)(y2) < um(y2)(y1). Then x̃ik0(y1� y2) ≤
mk(y2) −−−→

y2→x∗ x∗, so there are intermediate values of y1, y2 for which x̃ik0(y1� y2) = x. De-

note yi1 = y1, yi2 = y2, xik = x̃i(k+k0)(yi1� yi2), si = s̃i(yi1� yi2). Note that xi0 = x for all i.
We now construct a true Q1E s by taking the limit of a subsequence of si. We use a

diagonal argument: xi0 → x0 = x by construction. For all i, xi1 is contained in [x∗�x], so
we can take a convergent subsequence such that xij1 → x1. Next, we take a subsequence
such that the xijl

2 also converge, etc. By an abuse of notation, let xjk denote the result of
this argument, so that xjk → xk for all k.

The indifference conditions that made the si Q1Es under mi make s a Q1E under m by
continuity. To guarantee that s is a proper Q1E, we must also show that xk > xk+1 for all
k; xk −−−→

k→+∞
x∗; and xk −−−→

k→−∞
x∗∗.

For all these claims, it is enough to show that there cannot be two sequences xik(i),
xik′(i) such that k(i) < k′(i) for all i but limi→∞ xik(i) = limi→∞ xik′(i) ∈ (x∗�x∗∗). In turn,
it is enough to show that this cannot happen for k′(i) = k(i) + 1. Suppose it does, and
relabel the sequences as follows: yil = xi(l+k(i)). (If necessary, take a subsequence such that
yil → yl for all l.) Then we just have to show that y0 > y1. Clearly, y0 ≥ y1 as yi0 > yi1
for all i, so suppose y0 = y1. If y2 > y1, then m(y0) = m(y1) must be indifferent between
y1, S(y2), and y2, which implies y2 <m(y1) < y1. But then m(y1i) would strictly prefer yi2
to S(yi2) for high enough i, a contradiction. Hence y1 = y2, and by the same argument
y2 = y3 = y4 = · · · .

This will lead to a contradiction by a similar argument as in Proposition 2. Let
V (y) = (1 − δ)Um(y)(S(s(y))) − um(y)(y) as in that proof. The fact that y1 = y0 implies
that Vi(yi0) → 0. Now take an arbitrary sequence (g(i))i ⊆ N, and denote yig(i) = yi0 − εi.
Then, by the argument in Proposition 2,

Vi(yi0) ≥ (1 − δ)εi

(
− ∂

∂x
um(yi0)(ỹ)

)
+ δ(V (yi0)−Mεi

(
E

(
S(yi1)

) −E
(
S(yi(g(i)+1))

))
�

Vi(yi0) ≥ εi(− ∂

∂x
um(yi0)(ỹi)− δ

1 − δ
M

(
E

(
S(yi1)

) −E
(
S(yi(g(i)+1))

))

38If x̃ik −−−−→
k→−∞

y < x∗∗, we obtain a contradiction by the same argument as in Proposition 2.
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278 GERMÁN GIECZEWSKI

for some ỹi ∈ (yig(i)� yi0), where E(S(y))= (1 −δ)
∑∞

t=0 δ
tst(y). Given some 0 < ε′ < ε and

i ∈ N, we say that g(i) ∈ N is ε′, ε-valid if εi ∈ (ε′� ε) and E(S(yi1)) − E(S(yi(g(i)+1))) ≤
1−δ
2δ

− ∂
∂x um(yi0)(yi0)

M
. Clearly, if there are 0 < ε′ < ε with ε small enough, for which we can

find valid g(i) for arbitrarily high i, we obtain a contradiction, as lim infVi(yi0) > 0. If
not, then there must be a fixed ε > 0 and a sequence ε′

i → 0 for which there are no ε′
i,

ε-valid values of g(i) for any i ≥ i0. If there are arbitrarily high values of i for which
(yik)i ∩ (yi0 − ε� yi0 − ε′

i) is empty, then let yih(i) be the last element to the right of this gap,
that is, yi(h(i)+1) < yi0 − ε, yi0 − ε′

i < yih(i) and relabel the sequence so that zi0 = yih(i). Then
z1 < z0 = y0 = z−1, which leads to a contradiction by our previous argument. If there are
arbitrarily high values of i for which there is g(i) such that εi ∈ (ε′

i� ε), but E(S(yi1)) −
E(S(yi(g(i)+1))) > C for a fixed C, this implies that there are fixed C ′ and k0 such that
yi0 − yi(g(i)+k0) > C ′, and hence Vi(yi(g(i)+k)) ≥ C ′′ for some 0 < k ≤ k0. Note that k0, C, C ′,
and C ′′ are fixed even as we take ε to 0, which implies that ∂Vi(y)

∂y
must become arbitrarily

large and negative as i → ∞, a contradiction.
Next, we show that s is a 1E in [x∗�x∗ + d−

x∗ ] iff m(xn) < xn+2 for all n.
Note that m(xn) < xn+1 always holds (otherwise m(xn) would strictly prefer xn+1 to

S(xn+2)). If m(xn) > xn+2, m(xn) prefers m(xn) to xn+2; hence he prefers S(m(xn)) to
S(xn+2), and hence to S(xn+1). This implies that S(xn) cannot be a Condorcet winner in
I(xn), as the MVT must hold in this interval by Proposition 3, and thus s is not a 1E.

Conversely, suppose that, for some x ∈ [xn+1�xn), I(x) prefers S(y) to S(xn+2) for
some y ∈ [xk�xk−1). If k ≤ n + 2, this is impossible as all agents in [x − d−

x �m(x) + ε]
would strictly prefer S(xn+2) to S(y). Suppose then that k ≥ n + 3. By the MVT, m(x)
prefers S(y) to S(xn+2). Suppose m(x) ∈ [xb�xb−1); we will argue that b = k. If b < k,
m(x) prefers S(xn+2) to S(xb) to S(y), a contradiction. If b > k, m(x) prefers S(xn+2) to
S(xk) to S(y), a contradiction.

Next, note that, if indeed m(x) prefers S(y) to S(xn+2), she then prefers S(y) to S(xk−1),
and so do all agents z such that y − d−

y < z <m(x) by Assumption A2. Hence a majority
in I(xk−2) should prefer S(y) to S(xk−1). By the above argument, since y ∈ [xk�xk−1), it
must be that m(xk−2) ∈ [xk�xk−1), a contradiction. Q.E.D.

PROOF OF REMARK 1: This follows from e−rtuα(s(x� t))= e−r̃ rt
r̃ uα(s(x�

r̃
r
rt
r̃
)). Q.E.D.

PROOF OF REMARK 2: If there are x1 < x2 < x3 ∈ (x−d�x+d) such that f (x1), f (x3)
< f(x2), then there is a local maximum of f in (x1�x3)⊆ (x−d�x+d). Hence, if there is
no local maximum, there must be x∗ ∈ (x−d�x+d) such that f is decreasing in (x−d�x∗]
and increasing in [x∗�x + d). Suppose WLOG that f (x − d) ≤ f (x + d). By defini-
tion, F(m(x))−F(x−d) = F(x+d)−F(x−d)

2 ; this implies f (x)m′(x)= f (x+d)+f (x−d)

2 , given that
m(x) = x. Since x is a stable steady state, m′(x) < 1, so f (x) > f(x+d)+f (x−d)

2 ≥ f (x − d).
Hence x > x∗. But then f |(x−d�x) ≤ f (x) ≤ f |(x�x+d), where the first inequality is sometimes
strict. Hence F(x+d)−F(x) > F(x)−F(x−d), which contradicts m(x) = x. The other
case is analogous. Q.E.D.

PROOF OF REMARK 3: There must be d̂ such that f is strictly increasing in [x∗ − d̂� x∗]
and strictly decreasing in [x∗�x∗ + d̂]. Take d = d̂

2 . Then, for all d < d, f is strictly increas-
ing in [x∗ − 2d�x∗] and strictly decreasing in [x∗�x∗ + 2d], so m(x∗ − d) > x∗ − d and
m(x∗ + d) < x∗ + d. Hence there is a stable steady state in [x∗ − d�x∗ + d]. Q.E.D.

Additional proofs and robustness checks are found in Appendices B–E in the Supple-
mental Material (Gieczewski (2021)).
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