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Abstract

In this note, we provide an analytical characterization of the steady state
financial friction in the framework of Gertler and Karadi (2011). We obtain
three results. First, the steady state financial friction is purely determined
by the parameters of the banking sector. Second, there are two steady
state values of bank leverage, one stable and the other unstable. Third, we
identify the necessary and sufficient condition for the existence of a unique
positive steady state spread, which corresponds to either stable or unstable
leverage.
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1. Introduction

Considerable effort has been devoted to a better understanding of fricti-
ons in the financial sector from a macroeconomic perspective, especially
since the onset of the 2007–08 financial crisis. Among many theories deve-
loped so far, the framework of Gertler and Karadi (2011, henceforth GKa)
has proved to be a workhorse in quantitative works on the banking friction.
Building on the framework, subsequent works have investigated the quanti-
tative implications of the friction and addressed important policy questions,
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such as quantitative easing and macro-prudential policies.1

Despite its wide usage in the literature, there is still a lack of understan-
ding on the analytical properties of the banking friction in GKa. In this
note, we provide a complete characterization of the banking friction in the
deterministic steady state. And to our best knowledge, this is the first work
to provide such a characterization. The analytical results we derive reveal
three important properties of the steady state friction. First, the steady
state spread is fully pinned down, in conjunction with the bank leverage, by
two equations, one for individual bank incentive constraint and the other
for aggregate bank net worth constraint. Since the two equations do not
involve any aggregate variables outside the banking sector, the steady state
spread and leverage are independent from those variables as well. Second,
we show that in the steady state, the incentive constraint implies a mapping
from spread to bank leverage. For a given spread, bank leverage can take
two values in general, where one is stable and the other is unstable under a
perturbation. Third, we identify the necessary and sufficient condition for
the existence of a unique positive spread in steady state, and the condition
under which the spread corresponds to either stable or unstable leverage.

The paper is organized as follows. Section 2 describes the banking se-
tup. Section 3 analyzes the model and presents our main results. Section 4
concludes.

2. Model

2.1. Basic setup

In the framework of GKa, a banker with net worth nt survives each
period with probability θ ∈ (0, 1), and exits with probability 1 − θ taking
nt as payoff. Upon surviving, the banker raises deposit bt to fund asset
holdings Qtst, where Qt denotes the price of the asset, so that

Qtst = nt + bt.

After raising funds, the banker can either divert the asset or collect future
returns. The choice is unobservable and leads to a moral hazard problem. In
the case of diverting, the banker simply walks away with a fraction λ ∈ [0, 1)
of assetsQtst in hands. Alternatively, the banker obtains a gross asset return

1A partial list includes Gertler and Kiyotaki (2010), Gertler et al. (2012), Gertler and
Karadi (2013), Dedola et al. (2013), Gertler and Kiyotaki (2015), Bocola (2016), Liu
(2016), and Paoli and Paustian (2017).
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Rkt+1 next period. After paying a gross deposit rate Rt+1, the banker has
a net worth of

nt+1 = Rkt+1Qtst −Rt+1bt.

Combining those two equations, the transition law of bank net worth is

nt+1 = (Rkt+1 −Rt+1)Qtst +Rt+1nt. (1)

Given the stochastic discount factor {βjΛt,t+j}j≥1 and the initial net
worth nt, the banker chooses asset positions {st+j}j≥0 to maximize the
expected discount value of future payoffs

Vt = Et

∞∑
j=0

βj+1Λt,t+j+1θ
j(1− θ)nt+j+1, (2)

subject to the net worth transition law and the incentive constraint

nt+j+1 = (Rkt+j+1 −Rt+j+1)Qt+jst+j +Rt+j+1nt+j ,

Vt+j ≥ λQt+jst+j ,

for all j ≥ 0. By imposing the incentive constraint, asset diverting is ruled
out in the equilibrium.

The setup is closed with a transition law of the aggregate banking net
worth:

Nt+1 = θ[(Rkt+t −Rt+1)QtSt +RtNt] + ωQt+1St, (3)

where ω/(1 − θ) is the fraction of the total asset from the exiting bankers
distributed to each of new bankers.

2.2. Recursive solution

Following GKa, by (1) and (2), the banker’s problem has the following
recursive representation:

Vt = EtβΛt,t+1{(1− θ)[(Rkt+1 −Rt+1)Qtst +Rt+1nt] + θVt+1}.

As shown by GKa, Vt is linear in Qtst and nt. Let Vt = µtQtst+νtnt, where
µt and νt are parameters to be solved. From the recursion of Vt, we have

µt = EtβΛt,t+1[(1− θ)(Rkt+1 −Rt+1) + θµt+1xt+1], (4)

νt = EtβΛt,t+1[(1− θ)Rt+1 + θνt+1zt+1]. (5)

where xt+1 = Qt+1st+1/(Qtst) and zt+1 = nt+1/nt.
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We focus on the solution of the banking sector in which the incentive
constraints are always binding, i.e, Vt = λQtst. This leads to

µtQtst + νtnt = λQtst,

and implies

ϕt =
νt

λ− µt
, (6)

where ϕt = Qtst/nt denotes the bank leverage. Since all banks are symme-
tric, µt and νt are the same across the banking sector, and thus ϕt is also
the banking sector leverage.

With (6), the law of individual bank net worth transition becomes nt+1 =
[(Rkt+1 −Rt+1)ϕt +Rt+1]nt, so that

zt+1 = nt+1/nt = (Rkt+1 −Rt+1)ϕt +Rt+1, (7)

xt+1 = Qt+1st+1/Qtst = (ϕt+1/ϕt)zt+1. (8)

3. Analysis

3.1. Incentive constraint

We use the same notation, suppressing time subscripts, for the steady
state values. Let ∆R = Rk−R denote the credit spread. We start by consi-
dering the incentive constraint facing an individual bank, i.e., the conditions
corresponding to (4)–(8):

µ = β[(1− θ)∆R+ θxµ],

ν = β[(1− θ)R+ θzν],

ϕ =
ν

λ− µ
,

z = ∆Rϕ+R,

x = z,

as Λ = 1 in the steady state. Substitution of z and x into µ and ν yields:

µ =
β(1− θ)∆R

1− βθ(∆Rϕ+R)
,

ν =
β(1− θ)R

1− βθ(∆Rϕ+R)
.

4



Note that the substitution is meaningful if 1 > βθ(∆Rϕ+R) = θ(β∆Rϕ+1),
as βR = 1. This is satisfied if ϕ is not too large for a given ∆R.2

Furthermore, substitution of µ and ν into ϕ gives

ϕ =
1− θ

λ(1− θ − βθ∆Rϕ)− β(1− θ)∆R
≡ G(ϕ), (9)

which summarizes the incentive constraint facing an individual bank by a
single function between ∆R and ϕ. It is easy to verify that the denominator
of (9) is positive if ∆R < λ/β, and below we shall only consider ∆R within
this range. Given ∆R, we can transform (9) as a quadratic equation of ϕ:

F (ϕ) ≡ λβθ∆Rϕ2 − (1− θ)(λ− β∆R)ϕ+ (1− θ) = 0. (10)

Observing F (0) = 1− θ > 0 and

F (1) = λβθ∆R+ (1− θ)(1− λ+ β∆R) > 0,

it follows that whenever the two roots of (10) are real, they are both greater
than 1. The discriminant associated with F (ϕ) equals to

(1− θ)2(λ− β∆R)2 − 4λβθ∆R(1− θ) =

(1− θ)2
[
λ2 + β2∆R2 − 2

1 + θ

1− θ
λβ∆R

]
. (11)

For the existence of a steady state ϕ, the expression in the brackets has to
be non-negative. Treating the expression as a quadratic function of ∆R, the
associated discriminant is always greater than 0 as

4

(
1 + θ

1− θ

)2

λ2β2 − 4λ2β2 = 4λ2β2 4θ

(1− θ)2
> 0,

so there are always two roots, and (11) is non-negative only for

∆R ≤ ∆Rl ≡
λ

β

1−
√
θ

1 +
√
θ
, or ∆R ≥ ∆Rr ≡

λ

β

1 +
√
θ

1−
√
θ
. (12)

Since ∆Rl < λ/β < ∆Rr, we do not need to consider the case of ∆R ≥ ∆Rr.
For ∆R < ∆Rl, (9) has two roots greater than 1. The next proposition shows
that they have distinct stability properties.

2To be precise, this requires that ϕ < (1 − θ)/(βθ∆R), a condition satisfied by any
possible steady state ϕ, as shown below.
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Proposition 1. Given ∆R ≥ 0, if there are two values of steady state le-
verage ϕ∗ and ϕ∗∗ with ϕ∗ < ϕ∗∗, then only ϕ∗ is stable under a perturbation.

Proof. From (9), it is straightforward to verify that G(ϕ) is negative for
ϕ > ϕ̄ ≡ (1−θ)(λ−β∆R)/(βλθ∆R), and is positive, increasing, and convex
for ϕ < ϕ̄. Hence whenever G(ϕ) intersects with the 45◦ line ϕ at two points
ϕ∗ < ϕ∗∗ < ϕ̄, it crosses the line at ϕ∗ from above, goes underneath from ϕ∗

to ϕ∗∗, and crosses the line at ϕ∗∗ from below again.
Consider three cases of a small perturbation around the two candidate

values of the steady state leverage.

(i) If a banker chooses an asset s0 so that ϕ0 = Qs0/n ∈ (ϕ∗, ϕ∗∗), then
the banker would find it profitable to divert asset, since

ν

λ− µ
= G(ϕ0) < ϕ0 =

Qs0

n
⇒ V 0 = µQs0 + νn < λQs0.

Realizing the possibility of diverting, depositors would renegotiate
with the bank to reduce the leverage to ϕ∗, otherwise they can simply
withdraw deposits from the bank. Hence ϕ0 drops to ϕ∗.

(ii) If s0 is such that ϕ0 > ϕ∗∗, or equivalently G(ϕ0) > ϕ0, then the
banker would find it profitable to further increase s0 without violating
the incentive constraint, leading ϕ0 to be further away from ϕ∗∗.

(iii) Lastly, if ϕ0 < ϕ∗, the banker would utilize the unexploited leverage
capacity and increase ϕ0 to ϕ∗.

This demonstrates that the candidate leverage ϕ∗∗ is unstable to a small
perturbation, while ϕ∗ is stable. �

We conclude that the stable leverage corresponds to the smaller root of
(10):

ϕ∗ =
1− θ

2λβθ
·
λ− β∆R−

√
β2∆R2 − 21+θ

1−θλβ∆R+ λ2

∆R
, (13)

whereas the unstable leverage corresponds to the larger root:

ϕ∗∗ =
1− θ

2λβθ
·
λ− β∆R+

√
β2∆R2 − 21+θ

1−θλβ∆R+ λ2

∆R
. (14)
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We remark that ϕ∗ < ϕ∗∗ < (1 − θ)/(βθ∆R),3 which confirms the validity
of the substitution for µ and ν at the beginning of this subsection.

As a numerical example, consider the calibration of GKa. The authors
choose β = 0.99, θ = 0.972, and λ = 0.381, targeting an annual spread of
4×∆R = 1% with leverage of 4. It can be verified that ϕ = 4 is the smaller
root given by (13), whereas the larger root is around 7.4. Figure 1 provides
an illustration.
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Figure 1: Bank incentive constraint under GKa’s calibration

3.2. Net worth constraint

Unlike the individual bank net worth and asset, the aggregate net worth
and asset are constant in the steady state. As a consequence, the steady
state version of (3) is N = θ(∆Rϕ+R)N +ωQS. With R = 1/β, we obtain
the second equation between the steady state leverage and spread:

ϕ =
1− θ/β

θ∆R+ ω
. (15)

Evidently, 1−θ/β should be greater than 0, so that we require θ < β. Intui-
tively, individual banks have to exit the market quickly enough, otherwise
they will accumulate net worth indefinitely, preventing the existence of a
proper steady state. Given the parameterization of GKa with ω = 0.002,
the net worth constraint also implies ϕ = 4.

It is clear that the steady state incentive constraint and net worth con-
straint give two equations with two unknowns, i.e., spread and leverage,

3It is straightforward to check that
√

β2∆R2 − 2 1+θ
1−θ

λβ∆R+ λ2 < λ−β∆R, therefore

ϕ∗∗ < (1− θ)/(βθ∆R) · (1− β∆R/λ) < (1− θ)/(βθ∆R).
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and thus fully pin down the steady state of the banking sector. Since no
aggregate variable outside the banking sector is involved, we conclude that
the steady state spread and leverage are independent from the steady state
variables in rest of the economy.

3.3. Spread and leverage

We first consider the case of stable leverage. Combining (13) and (15)
gives the equation of the steady state spread ∆R:

1− θ/β

θ∆R+ ω
=

1− θ

2λβθ
·
λ− β∆R−

√
β2∆R2 − 21+θ

1−θλβ∆R+ λ2

∆R
. (16)

Focusing on the case of ∆R > 0, we rewrite the above equation as

Ω(∆R) ≡ (1− θ/β)∆R

θ∆R+ ω
=

1− θ

2λβθ

(
λ− β∆R−

√
β2∆R2 − 21+θ

1−θλβ∆R+ λ2

)
≡ Φ(∆R). (17)

To investigate the existence of a steady state with positive spread, we
first note that for ∆R ∈ (0,∆Rl], Ω(∆R) is positive, increasing, and concave,
with

Ω′(0) =
1− θ/β

ω
> 0 and Ω′′(∆R) = −2(1− θ/β)ωθ

(θ∆R+ ω)3
< 0,

as θ/β < 1 by assumption. Furthermore, Φ(∆R) is positive, increasing, and
convex, with

Φ′(0) =
1

λ
, lim

∆R→∆Rl

Φ′(∆R) = ∞,

and

Φ′′(∆R) ∝ 4θ

(1− θ)2
> 0.

Since Ω(0) = Φ(0) = 0, it follows that (17) has a unique solution greater
than 0 if and only if

1− θ/β

ω
= Ω′(0) > Φ′(0) =

1

λ
, (18)

and Ω(∆Rl) ≤ Φ(∆Rl), or equivalently,

√
θ(1−

√
θ/β)

1 +
√
θ

≤ ω

λ
. (19)
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It is straightforward to verify that the parameterization in GKa implies
4∆Rl = 1.09%, and the steady state spread is 4∆R = 1% annually.

Next, consider the case of unstable leverage. The equation characterizing
the steady state spread takes a slightly different form:

Ω(∆R) ≡ (1− θ/β)∆R

θ∆R+ ω
=

1− θ

2λβθ

(
λ− β∆R+

√
β2∆R2 − 21+θ

1−θλβ∆R+ λ2

)
≡ Ψ(∆R), (20)

where we continue to focus on the case of ∆R > 0.
Similar to the analysis under the stable leverage, it is straightforward to

show that Ψ(∆R) is positive and concave over (0,∆Rl], with

Ψ′(0) = − 1

λθ
, lim

∆R→∆Rl

Ψ′(∆R) = −∞,

and

Ψ′′(∆R) ∝ − 4θ

(1− θ)2
< 0.

Since Ω(0) = 0 < Φ(0), it is clear that a unique solution to (20) exists if
and only if Ω(∆Rl) ≥ Ψ(∆Rl), or equivalently

√
θ(1−

√
θ/β)

1 +
√
θ

≥ ω

λ
. (21)

We can further combine the two cases, by observing that Φ(∆Rl) =
Ψ(∆Rl), and (19) is just the opposite of (21). The following proposition
summarizes the results:

Proposition 2. There exists a unique, positive steady state spread, if and
only if

1− θ/β > ω/λ.

Moreover, when √
θ(1−

√
θ/β)/(1 +

√
θ) ≤ ω/λ,

the corresponding steady state leverage is stable; on the contrary, when

√
θ(1−

√
θ/β)/(1 +

√
θ) ≥ ω/λ,

the corresponding leverage is unstable.
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Figure 2 gives an illustration of the proposition. The left panel shows
the steady state spread under GKa’s parameterization, where ω = 0.002.
Clearly, Ω crosses Φ only, implying a steady state associated with the stable
leverage. The right panel has the same parameterization as the GKa except
for a smaller ω = 0.0001. In this case, Φ and Ψ remain the same, but Ω
shifts upward and intersects with Ψ instead of Φ, leading to a steady state
featuring unstable leverage.
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Figure 2: Steady state spreads under different ω

As a final remark, we discuss the remaining case where 1− θ/β ≤ ω/λ.
First, when 1−θ/β = ω/λ, Ω and Φ are tangent to each other at ∆R = 0, and
it can be easily verified by l’Hospital law that ∆R = 0 is the unique solution
to (16). Indeed, this is also the only case where the steady state spread is
zero with a binding incentive constraint. Second, when 1 − θ/β < ω/λ, we
have a steady state of a non-binding incentive constraint and a zero spread.4

The result follows from the fact that a positive spread is inconsistent with a
non-binding incentive constraint, while a binding constraint is incompatible
with any steady state spread under the stated condition.

4. Conclusion

Besides the theoretical interests on their own, the analytical results in
this note can be readily used to guide calibration works building on the GKa

4Since the incentive constraint ceases to be binding, the steady state leverage is deter-
mined solely by the aggregate net worth constraint. Moreover, as already known in the
literature, even if 1− θ/β ≥ ω/λ, the zero spread steady state with non-binding incentive
constraint exists as well, a situation where financial friction is not effective.

10



framework. Moreover, the results on the steady state financial friction can
shed light on the effects of various financial policies, such as the QE type
government credit intervention, bank equity injection, and bank funding cost
subsidy. In some preliminary work, we show that all these policies can help
reduce the steady state spread, hence yield a first order impact for financial
stabilization.
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