Expectations and Stability

Jianpo XUE

Xiamen University

July 2023

Outline

- Expectations in macroeconomics and sources of business cycles
 - The role of expectations;
 - Sources of business cycles.
- Basic tools: difference equations and stability of nonlinear system
 - Concepts;
 - First-order difference equations;
 - Higher-order difference equations;
 - Simultaneous difference equations.
- RBC model
 - Solving for the recursive law of motion using the method of undetermined coefficients;
- RBC models with factor-generated externalities
- Monetary model with Taylor rule
- References

Expectations in macroeconomics

The role of expectations

- Central difference between economics and natural sciences: forward-looking decisions made by economic agents;
- Expectations play a key role;
 - Examples: consumption theory; investment decisions; asset prices, etc.
- The role of expectations: they influence the time path of the economy, and the time path of the economy influences expectations.
 - Rational expectation (RE): mathematical conditional expectation of the relevant variables;
 - The expectations are conditioned on all of the information available to the decision makers

Expectations in macroeconomics

Two examples

Example 1. Cobweb model

$$d_t = m_l - m_p p_t + v_{1t},$$

$$s_t = r_l + r_p p_t^e + v_{2t},$$

$$s_t = d_t,$$

where m_l , m_p , r_l and r_p are all positive constant. • Example 2. Cagan model

$$m_t-p_t=-\psi\left(p^e_{t+1}-p_t
ight)$$
 , $\psi>0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sources of business cycles

News view of business cycles

- Business cycles are mainly the result of agents having incentives to continuously anticipate the economy's future demands.
 - If an agent can properly anticipate a future need...
 - If many agents adopt similar behavior...
 - However, errors are possible...
- Trace back to Pigou (1927)

The very source of fluctuations is the "wave-like swings in the mind of the business world between errors of optimism and errors of pessimism."

- Keynes' 1936 notion of animal spirits.
- Then what are optimism and pessimism in business cycles?
 - an entirely psychological phenomenon?
 - self-fulfilling fluctuations? The macroeconomy is inherently unstable
 - news view?

Concepts on difference equations

Definition

Discrete time: time is taken to be a discrete variable (integer number, like 1,2,3...)

Definition

First-order difference is

$$\Delta y_t = y_{t+1} - y_t,$$

where y_t is the value of y in the t^{th} period. Second-order difference is

$$\Delta^2 y_t = \Delta \left(\Delta y_t \right) = y_{t+2} - 2y_{t+1} + y_t.$$

Note 1: "period" - rather than point - of time. Note 2: *y* has a unique value in each period of time. Concepts

Definition Difference Equation:

$$\Delta y_t = y_{t+1} - y_t = c$$
 ,

or

$$y_{t+1}-y_t=ay_t+b.$$

Note: the choice of time subscripts is arbitrary, i.e. it does not make any difference if we write it as $y_{t+1} - y_t = c$ or as $y_{t+2} - y_{t+1} = c$.

Solving a first-order difference equation

- Iterative method
- General method

$$y_{t+1} + ay_t = c$$
,

The general solution y_t consists of y_p (particular solution) and y_c (complementary solution)

- Complementary solution: Try $y_t = Ab^t$ (A is arbitrary) and get b = -a.
- Particular solution: 1. if a ≠ −1, solve y_p = c/(1+a); 2. if a = −1, solve y_p = ct.

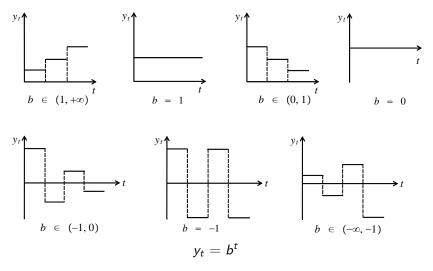
► Get y_t

$$y_{t} = y_{c} + y_{p} = \begin{cases} A(-a)^{t} + rac{c}{1+a}, a \neq -1 \\ A + ct, a = -1 \end{cases}$$

How about A? - Determined by y₀.

Dynamic stability of equilibrium

► The significance of *b*:



▶ Nonoscillatory (oscillatory) if b > (<)0;

Dynamic stability of equilibrium

The role of A

- Scale effect: magnitude
- Mirror effect: sign

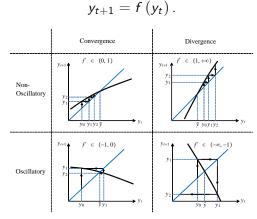
Example: A market model with inventory

$$egin{aligned} Q_{dt} &= lpha - eta P_t, \ Q_{st} &= -\gamma + \delta P_t, \ P_{t+1} &= P_t - \sigma \left(Q_{st} - Q_{dt}
ight), \end{aligned}$$

where α , β , γ , δ , $\sigma > 0$. Solve the time path of P_t .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-linear difference equations: qualitative-graphic approach



Stability of Non-Linear System

Higher-order difference equations

 Second-order linear difference equations with constant coefficients and constant term

$$y_{t+2} + a_1 y_{t+1} + a_2 y_t = c.$$

• Particular solution y_p : the intertemporal equilibrium level of y.

 Complementary solution: the deviation from the equilibrium for every time period

$$y_{t+2} + a_1 y_{t+1} + a_2 y_t = 0.$$

Try $y_t = Ab^t$ and get the characteristic equation

$$b^2 + a_1b + a_2 = 0$$

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 Q Q</p>

Higher-order difference equations

• Case 1: two distinct real roots: $a_1^2 > 4a_2$

$$y_c = A_1 b_1^t + A_2 b_2^t.$$

• Case 2: repeated real roots: $a_1^2 = 4a_2$ and thus $b = b_1 = b_2 = -\frac{a_1}{2}$

$$y_c = A_3 b^t + A_4 t b^t.$$

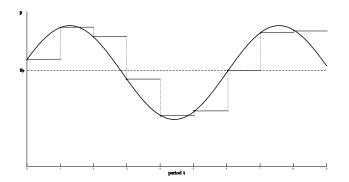
• Case 3: complex roots: $a_1^2 < 4a_2$

$$b_{1,2} = h \pm vi$$
, where $h = -\frac{a_1}{2}$ and $v = \frac{\sqrt{4a_2 - a_1^2}}{2}$,
 $y_c = A_1 b_1^t + A_2 b_2^t = A_1 (h + vi)^t + A_2 (h - vi)^t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Higher-order difference equations

► Because
$$(h \pm vi)^t = R^t (\cos \theta t \pm i \sin \theta t)$$
 where
 $R = \sqrt{h^2 + v^2} = \sqrt{a_2}, \cos \theta = \frac{h}{R} = -\frac{a_1}{2\sqrt{a_2}}$ and
 $\sin \theta = \frac{v}{R} = \sqrt{1 - \frac{a_1^2}{4a_2}}$, we have
 $y_c = R^t (A_5 \cos \theta t + A_6 \sin \theta t)$.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Convergence of the time path

Distinct roots

- Dominant root: the root with the higher absolute value
- A time path will be convergent iff the dominant root is less than 1 in absolute value
- Repeated roots: if |b| < 1, we have convergence
- Complex roots:
 - if R < 1, i.e. |b| < 1, we have damped stepped fluctuation
 - if R > 1, i.e. |b| > 1, we have explosive stepped fluctuation

Simultaneous difference equations

 Relation between higher-order difference equation and simultaneous difference equations

$$y_{t+2} + a_1 y_{t+1} + a_2 y_t = c.$$

Define $x_t = y_{t+1}$. We will have

$$x_{t+1} + a_1 x_t + a_2 y_t = c,$$

 $y_{t+1} = x_t.$

In matrix form, it is

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} -a_1 & -a_2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix} + \begin{pmatrix} c \\ 0 \end{pmatrix}.$$

Simultaneous difference equations

$$X_{t+1} = AX_t + b,$$

where $X_t = (x_{1t}, x_{2t}, ..., x_{nt})'$, A is a constant matrix with coefficients a_{ij} , i, j = 1...n, and $b = (b_1, b_2, ..., b_n)'$.

Simultaneous difference equations

• Particular solution: $x_{t+1} = x_t = x$ and $y_{t+1} = y_t = y$;

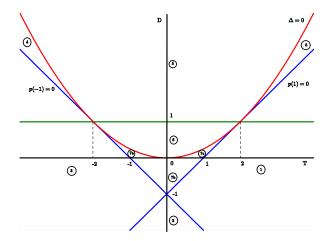
- Complementary solution: substituting x_t = mb^t and y_t = nb^t, we have the characteristic equation and the characteristic roots b₁ and b₂.
- Characteristic equation

$$p(b) = |A - bI| = b^2 - Tb + D = 0$$
,

where *T* and *D* are the trace and determinant of matrix *A*.
▶ Moreover, we know that

$$\mathcal{T} = b_1 + b_2, \ \mathcal{D} = b_1 b_2,$$

 $p(b) = (b - b_1) (b - b_2).$



Stability Triangle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Red line: $\Delta = T^2 - 4D = 0$

- ▶ Region above the red line: Δ < 0 ⇒ complex roots;</p>
- Region below the red line: $\Delta > 0 \Rightarrow$ real roots;
- ► Blue lines: p(1) = 1 T + D = 0 and p(-1) = 1 + T + D = 0
 - Region above (below) the right blue line: p(1) > (<) 0;
 - Region above (below) the left blue line: p(-1) > (<) 0;

- ▶ Green line: D = 1
 - Region above the green line: |b| > 1;
 - Region below the green line: |b| < 1.

Region	$p(b_i)$	bi	Stability
1	$p\left(1 ight)<0,\ p\left(-1 ight)>0$	$ b_1 < 1, \ b_2 > 1$	saddle
2	$p\left(1 ight)<$ 0, $p\left(-1 ight)<$ 0	$ b_1b_2 < 0, b_i > 1$	explosive
3	$p\left(1 ight)>0,\ p\left(-1 ight)<0$	$ b_1 < 1, \ b_2 < -1$	saddle
4	$p\left(1 ight)>$ 0, $p\left(-1 ight)>$ 0 $\mathcal{D}>$ 1, $\mathcal{T}<-2$	$b_i < -1$	explosive
5	$\Delta <$ 0, $\mathcal{D} >$ 1	$ b_i > 1$	explosive
6	$\Delta <$ 0, $\mathcal{D} < 1$	$ b_i < 1$	stable
7	$p\left(1 ight)>0,\ p\left(-1 ight)>0$ $\mathcal{D}<1$	$ b_i < 1$	stable
8	$egin{aligned} & p\left(1 ight)>0,\ p\left(-1 ight)>0\ & \mathcal{D}>1,\ \mathcal{T}>2 \end{aligned}$	$b_i > 1$	explosive

▶ Conditions for a saddle: p(1) < 0, p(-1) > 0 or p(1) > 0, p(-1) < 0

Or equivalent as

$$|\mathcal{T}| > |1 + \mathcal{D}|$$
 .

▶ Conditions for two stable roots: $\Delta < 0$, $\mathcal{D} < 1$ or p(1) > 0, p(-1) > 0, $\mathcal{D} < 1$

$$\mathcal{D} < 1$$
, $1 - \mathcal{T} + \mathcal{D} > 0$ and $1 + \mathcal{T} + \mathcal{D} > 0$,

i.e.

$$\mathcal{D} < 1$$
 and $|\mathcal{T}| < 1 + \mathcal{D}.$

Local Uniqueness/Multiplicity

Definition

Predetermined variable: the variable whose initial value is given, as k, h, and b;

Definition

Jump variable: the variable whose initial value is not given, as c, l, and p (sometimes).

Theorem

Conditions for local uniqueness/multiplicity:

1. If the number of stable roots = the number of predetermined variables \Rightarrow Saddle path (Determinacy);

2. If the number of stable roots < the number of predetermined variables \Rightarrow Source (Explosive);

3. If the number of stable roots > the number of predetermined variables \Rightarrow Sink (Indeterminacy).

Solve for the recursive law of motion with method of undetermined coefficients.

State variables: \hat{k}_{t-1} , \hat{z}_t

The dynamics of the model should be described by **recursive laws of motion** in terms of the state variables,

$$egin{array}{rcl} \hat{k}_t &=& v_{kk} \hat{k}_{t-1} + v_{kz} \hat{z}_t, \ \hat{c}_t &=& v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_t. \end{array}$$

We need to solve for v_{kk} , v_{kz} , v_{ck} and v_{cz} , the "undetermined" coefficients.

Coefficient interpretation: *elasticities*.

Recall: the log-linearized system consists of

$$\hat{k}_{t} = \frac{1}{\beta} \hat{k}_{t-1} - \frac{\overline{C}}{\overline{K}} \hat{c}_{t} + \frac{\widetilde{\delta}}{\alpha \beta} \hat{z}_{t},$$

$$\sigma \mathbf{E}_{t} \hat{c}_{t+1} + \widetilde{\delta} (1-\alpha) \hat{k}_{t} - \widetilde{\delta} \mathbf{E}_{t} \hat{z}_{t+1} = \sigma \hat{c}_{t},$$

$$\hat{z}_{t} = \psi \hat{z}_{t-1} + \varepsilon_{t}.$$

Recursivity

Substitute the postulated linear recursive law of motion into the dynamic equations until only k_{t-1} and z_t remain. E.g.

$$\mathrm{E}_t \hat{z}_{t+1} = \psi \hat{z}_t,$$

$$\begin{split} \mathrm{E}_{t} \hat{c}_{t+1} &= \mathrm{E}_{t} (v_{ck} \, \hat{k}_{t} + v_{cz} \hat{z}_{t+1}) \\ &= v_{ck} \left(v_{kk} \, \hat{k}_{t-1} + v_{kz} \hat{z}_{t} \right) + v_{cz} \psi \hat{z}_{t} \\ &= v_{ck} \, v_{kk} \, \hat{k}_{t-1} + \left(v_{ck} \, v_{kz} + v_{cz} \psi \right) \hat{z}_{t}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compare coefficients.

Recursivity

For the first equation (budget constraint)

$$\begin{aligned} \hat{k}_t &= \frac{1}{\beta} \hat{k}_{t-1} - \frac{\bar{C}}{\bar{K}} \hat{c}_t + \frac{\tilde{\delta}}{\alpha \beta} \hat{z}_t, \\ v_{kk} \hat{k}_{t-1} + v_{kz} \hat{z}_t &= \frac{1}{\beta} \hat{k}_{t-1} - \frac{\bar{C}}{\bar{K}} \left(v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_t \right) + \frac{\tilde{\delta}}{\alpha \beta} \hat{z}_t, \\ \left(\frac{1}{\beta} - \frac{\bar{C}}{\bar{K}} v_{ck} - v_{kk} \right) \hat{k}_{t-1} + \left(\frac{\tilde{\delta}}{\alpha \beta} - \frac{\bar{C}}{\bar{K}} v_{cz} - v_{kz} \right) \hat{z}_t = 0. \end{aligned}$$

Comparing coefficients: since the equation has to be satisfied for any value of \hat{k}_{t-1} and \hat{z}_t , we have

for
$$\hat{k}_{t-1}$$
 : $v_{kk} = \frac{1}{\beta} - \frac{\bar{C}}{\bar{K}} v_{ck}$
for \hat{z}_t : $v_{kz} = \frac{\tilde{\delta}}{\alpha\beta} - \frac{\bar{C}}{\bar{K}} v_{cz}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recursivity

For the second equation (Euler equation/asset pricing)

$$\begin{aligned} \sigma \mathbf{E}_t \hat{\mathbf{c}}_{t+1} + \widetilde{\delta} \left(1 - \alpha \right) \mathbf{E}_t \hat{\mathbf{k}}_t - \widetilde{\delta} \mathbf{E}_t \hat{\mathbf{z}}_{t+1} &= \sigma \hat{\mathbf{c}}_t, \\ \sigma \left[\mathbf{v}_{ck} \mathbf{v}_{kk} \hat{\mathbf{k}}_{t-1} + \left(\mathbf{v}_{ck} \mathbf{v}_{kz} + \mathbf{v}_{cz} \psi \right) \hat{\mathbf{z}}_t \right] + \widetilde{\delta} \left(1 - \alpha \right) \left(\mathbf{v}_{kk} \hat{\mathbf{k}}_{t-1} + \mathbf{v}_{kz} \hat{\mathbf{z}}_t \right) + \\ &= \sigma \left(\mathbf{v}_{ck} \hat{\mathbf{k}}_{t-1} + \mathbf{v}_{cz} \hat{\mathbf{z}}_t \right), \end{aligned}$$

$$\begin{bmatrix} \sigma \mathbf{v}_{ck} \mathbf{v}_{kk} + \widetilde{\delta} (1 - \alpha) \mathbf{v}_{kk} - \sigma \mathbf{v}_{ck} \end{bmatrix} \hat{k}_{t-1} + \\ \begin{bmatrix} \sigma (\mathbf{v}_{ck} \mathbf{v}_{kz} + \mathbf{v}_{cz} \psi) + \widetilde{\delta} (1 - \alpha) \mathbf{v}_{kz} - \widetilde{\delta} \psi - \sigma \mathbf{v}_{cz} \end{bmatrix} \hat{z}_{t} \\ = 0.$$

Comparing coefficients, we have

for
$$\hat{k}_{t-1}$$
 : $\sigma v_{ck} (1 - v_{kk}) = \widetilde{\delta} (1 - \alpha) v_{kk}$,
for \hat{z}_t : $\sigma v_{cz} (1 - \psi) = \left[\sigma v_{ck} + \widetilde{\delta} (1 - \alpha) \right] v_{kz} - \widetilde{\delta} \psi$.

Comparing coefficients

Collecting the results, and comparing coefficients on \hat{k}_{t-1} ,

$$\sigma \mathbf{v}_{ck} \left(1 - \mathbf{v}_{kk} \right) = \widetilde{\delta} \left(1 - \alpha \right) \mathbf{v}_{kk}, \tag{1}$$

$$v_{kk} = \frac{1}{\beta} - \frac{\bar{C}}{\bar{K}} v_{ck}.$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To solve v_{kk} , we substitute v_{ck} and obtain a quadratic equation

$$\mathbf{v}_{kk}^2 - \left[1 + \frac{1}{\beta} - \frac{\widetilde{\delta}(1-\alpha)}{\sigma} \frac{\overline{C}}{\overline{K}}\right] \mathbf{v}_{kk} + \frac{1}{\beta} = 0.$$

$$0=v_{kk}^2-\gamma v_{kk}+\frac{1}{\beta},$$

where

$$\gamma = 1 + rac{1}{eta} + rac{\widetilde{\delta} \left(1 - lpha
ight)}{\sigma} rac{1 - \left[1 - \left(1 - lpha
ight)\delta
ight]eta}{lphaeta}.$$

The solution is a high school math problem:

$$v_{kk} = rac{\gamma}{2} - \sqrt{\left(rac{\gamma}{2}
ight)^2 - rac{1}{eta}}$$

Why we delete the root

$$\frac{\gamma}{2} + \sqrt{\left(\frac{\gamma}{2}\right)^2 - \frac{1}{\beta}}.$$
?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\begin{aligned} \left(\mathbf{v}_{kk} - \lambda_1 \right) \left(\mathbf{v}_{kk} - \lambda_2 \right) &= \mathbf{0}, \\ \mathbf{v}_{kk}^2 - \left(\lambda_1 + \lambda_2 \right) \mathbf{v}_{kk} + \lambda_1 \lambda_2 &= \mathbf{0}, \end{aligned}$$

$$\begin{array}{rcl} \lambda_1\lambda_2 &=& \displaystyle\frac{1}{\beta}>1,\\ \\ \lambda_1+\lambda_2 &=& \gamma>1+\displaystyle\frac{1}{\beta},\\ \\ \text{hence, } \lambda_1+\lambda_2 &>& 1+\lambda_1\lambda_2,\\ (1-\lambda_1)(\lambda_2-1) &>& 0. \end{array}$$

so λ_1 and λ_2 both positive, one root > 1, and the other root < 1. We need to delete the explosive solution!

Once v_{kk} is solved, the others can be solved easily. Plugging it into equation (2),

$$\mathbf{v}_{ck} = \left(\frac{\widetilde{\delta}}{lphaeta} - \delta\right) \left(\frac{1}{eta} - \mathbf{v}_{kk}\right),$$

we get v_{ck} .

Then for coefficients on \hat{z}_t

$$\mathbf{v}_{kz} = \left(\delta - \frac{\widetilde{\delta}}{\alpha\beta}\right)\mathbf{v}_{cz} + \frac{\widetilde{\delta}}{\alpha\beta},$$

$$\sigma \mathbf{v}_{cz} \left(1 - \psi\right) = \left[\sigma \mathbf{v}_{ck} + \widetilde{\delta} \left(1 - \alpha\right)\right]\mathbf{v}_{kz} - \widetilde{\delta}\psi,$$
(3)

i.e.

$$v_{cz} = \frac{\sigma v_{ck} + \widetilde{\delta} (1 - \alpha) - \alpha \beta \psi}{\sigma (1 - \psi) - \left[\sigma v_{ck} + \widetilde{\delta} (1 - \alpha) \right] \left(\delta - \frac{\widetilde{\delta}}{\alpha \beta} \right)} \frac{\widetilde{\delta}}{\alpha \beta},$$

where v_{ck} is known. Substituting v_{cz} into (3), we solve v_{kz} .

We could obtain

$$egin{array}{rcl} \hat{k}_t &=& v_{kk} \hat{k}_{t-1} + v_{kz} \hat{z}_t, \ \hat{c}_t &=& v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_t, \ \hat{z}_t &=& \psi \hat{z}_{t-1} + arepsilon_t, \end{array}$$

where

$$v_{kk} = \frac{\gamma}{2} - \sqrt{\left(\frac{\gamma}{2}\right)^2 - \frac{1}{\beta}}, \ v_{ck} = \left(\frac{\widetilde{\delta}}{\alpha\beta} - \delta\right) \left(\frac{1}{\beta} - v_{kk}\right),$$
$$v_{cz} = \frac{\sigma v_{ck} + \widetilde{\delta} (1 - \alpha) - \alpha\beta\psi}{\sigma (1 - \psi) - \left[\sigma v_{ck} + \widetilde{\delta} (1 - \alpha)\right] \left(\delta - \frac{\widetilde{\delta}}{\alpha\beta}\right)} \frac{\widetilde{\delta}}{\alpha\beta},$$
$$v_{kz} = \left(\delta - \frac{\widetilde{\delta}}{\alpha\beta}\right) v_{cz} + \frac{\widetilde{\delta}}{\alpha\beta}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Calibration and simulation

Assuming quarterly data with

$$\begin{array}{ll} \beta = 0.99 & \alpha = 0.36 \\ \sigma = 1.0 & \delta = 0.025 \\ \bar{Z} = 1 & \psi = 0.95 \end{array}$$

Then we get...

Calibration and simulation

• Impulse response analysis: trace out all variables for $\varepsilon_1 = 1$, $\varepsilon_t = 0$ for t > 1, when starting from the steady state.

Because

$$\hat{z}_t = \psi \hat{z}_{t-1} + arepsilon_t$$
,

we have

$$egin{aligned} \hat{z}_1 &= \psi \hat{z}_0 + arepsilon_1 = arepsilon_1, \ \hat{z}_2 &= \psi \hat{z}_1 + arepsilon_2 = \psi arepsilon_1, \ \hat{z}_j &= \psi^{j-1} arepsilon_1. \end{aligned}$$

and

$$\hat{k}_{1} = v_{kk}\hat{k}_{0} + v_{kz}\hat{z}_{1} = v_{kz}\varepsilon_{1},$$

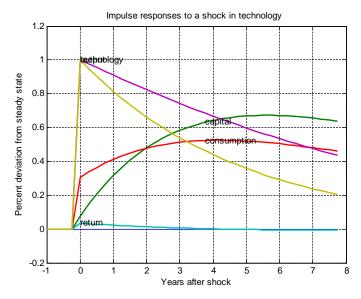
$$\hat{k}_{2} = v_{kk}\hat{k}_{1} + v_{kz}\hat{z}_{2} = v_{kk}v_{kz}\varepsilon_{1} + v_{kz}\psi\varepsilon_{1} = (v_{kk} + \psi)v_{kz}\varepsilon_{1},$$

$$\hat{k}_{j} = v_{kk}\hat{k}_{j-1} + v_{kz}\psi^{j-1}\varepsilon_{1} = \sum_{i=0}^{j-1} (v_{kk}^{i}\psi^{j-i-1})v_{kz}\varepsilon_{1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Calibration and simulation

Impulse response functions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

RBC models with factor-generated externalities

Terminologies

- (local) indeterminacy infinite number of equilibrium paths converging to the same steady state.
- Sunspot equilibria (Shell, 1977; Cass and Shell, 1983): self-fulfilling expectations; self-fulfilling prophecies
 - agents receive different allocations across states with identical fundamentals
 - equilibrium allocations influenced by purely extrinsic belief shocks in general equilibrium models;
 - agents have identical fundamentals: preferences, endowments and technology;
 - agents have different consumption and/or production;
 - cannot occur under Arrow-Debreu structure.
- indeterminacy implies the existence of stationary sunspot equilibria.
- existence of sunspot equilibria implies economy can fluctuate in the absence of schocks to fundamentals.
- ► use indeterminacy, sunspots, self-fulfilling expectations, self-fulfilling prophecies interchangeably.

Some strands of literature

 Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);
- Monetary transmission mechanism: MIU model in Calvo (1979), Money in the production function model in Benhabib and Farmer (1996), CIA model in Cooley and Hansen (1989, 1991);

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);
- Monetary transmission mechanism: MIU model in Calvo (1979), Money in the production function model in Benhabib and Farmer (1996), CIA model in Cooley and Hansen (1989, 1991);
- Policy Feedback: Fiscal policy (Leeper, 1991; Leith and Thadden, 2008), Monetary policy (Leeper, 1991; Dupor, 2001; Carlstrom and Fuerst, 2005, Huang, Meng and Xue, 2009, 2018, 2019);

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);
- Monetary transmission mechanism: MIU model in Calvo (1979), Money in the production function model in Benhabib and Farmer (1996), CIA model in Cooley and Hansen (1989, 1991);
- Policy Feedback: Fiscal policy (Leeper, 1991; Leith and Thadden, 2008), Monetary policy (Leeper, 1991; Dupor, 2001; Carlstrom and Fuerst, 2005, Huang, Meng and Xue, 2009, 2018, 2019);
- Endogenous economic growth: Benhabib and Perli (1994), Xie (1994), Mino (2001);

With factor-generated externalities

Benhabib-Farmer-Guo model, the representative agent solves

$$\max \sum_{t=0}^{\infty} E_t \rho^t \left(\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{L_t^{1+\chi}}{1+\chi} \right),$$
 (5)

subject to

$$C_t + K_{t+1} \le (1 - \delta) K_t + Y_t \text{ and } Y_t = A_t K_t^a L_t^b, \quad (6)$$

where $a + b = 1$, and $A_t = \overline{K}_t^{\alpha - a} \overline{L}_t^{\beta - b}$.

Wen (1996): capacity utilization;

$$y_t = \overline{e}_t \left(u_t K_t
ight)^{lpha} L_t^{1-lpha}$$
, where $\overline{e}_t = \left(\overline{u}_t \overline{K}_t
ight)^{\gamma heta} \overline{L}_t^{(1-\gamma) heta}$,

where

$$\dot{K}_t = I_t - \delta_t K_t$$
 and $\delta_t = \tau u_t^{\eta}$.

 Benhabib and Farmer (1996): two-sector model with sector-specific externalities.

$$y_t^j = \left[\left(K_t^j \right)^{\alpha} \left(L_t^j \right)^{1-\alpha} \right]^{\theta_j} \left[K_t^{\alpha} L_t^{1-\alpha} \right]^{\sigma_j} \left(k_t^j \right)^{\alpha} \left(l_t^j \right)^{1-\alpha}, \text{ where } j = I, C$$

 Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.

Labor-only economy:

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
 - Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
 - Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;

Endogenous investment:

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
 - Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;

- Endogenous investment:
 - Rental market for capital: Carlstrom and Fuerst (2005);

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
 - Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;
- Endogenous investment:
 - Rental market for capital: Carlstrom and Fuerst (2005);
 - Firm-specific capital: Woodford (2003); Sveen and Weinke (2005, 2007); Kurozumi and Van Zandweghe (2008); Huang, Meng and Xue (2009); Duffy and Xiao (2011);

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
 - Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;
- Endogenous investment:
 - Rental market for capital: Carlstrom and Fuerst (2005);
 - Firm-specific capital: Woodford (2003); Sveen and Weinke (2005, 2007); Kurozumi and Van Zandweghe (2008); Huang, Meng and Xue (2009); Duffy and Xiao (2011);
 - Increasing returns-to-scale: Duffy and Xiao (2008); Huang and Meng (2009).

DSGE structure (as RBC model)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- DSGE structure (as RBC model)
 - an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)

- DSGE structure (as RBC model)
 - an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
 - a large number of firms (with identical technology, subject to exogenous random shocks)

- DSGE structure (as RBC model)
 - an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
 - a large number of firms (with identical technology, subject to exogenous random shocks)

AD and AS blocks

- DSGE structure (as RBC model)
 - an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
 - a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks
 - ► AD block: the (log-linearised) consumption Euler equation

$$x_{t} = E_{t}(x_{t+1}) - \frac{1}{\sigma}(i_{t} - E_{t}(\pi_{t+1})) + u_{t}$$

- DSGE structure (as RBC model)
 - an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
 - a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks
 - AD block: the (log-linearised) consumption Euler equation

$$x_{t} = E_{t}(x_{t+1}) - \frac{1}{\sigma}(i_{t} - E_{t}(\pi_{t+1})) + u_{t}$$

AS block: the "New Keynesian Phillips Curve"

$$\pi_{t} = \beta \mathbf{E}_{t} \left(\pi_{t+1} \right) + \kappa \mathbf{x}_{t}$$

- DSGE structure (as RBC model)
 - an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
 - a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks
 - ► AD block: the (log-linearised) consumption Euler equation

$$x_{t} = E_{t}(x_{t+1}) - \frac{1}{\sigma}(i_{t} - E_{t}(\pi_{t+1})) + u_{t}$$

AS block: the "New Keynesian Phillips Curve"

$$\pi_{t} = \beta \mathbf{E}_{t} \left(\pi_{t+1} \right) + \kappa \mathbf{x}_{t}$$

Policy rule

$$i_t = f\left(\Omega_t\right) + v_t$$

References

[1] Chiang and Wainwright (2005), Chapter 17-19;

[2] Beaudry, P., and F. Portier. 2014. News-Driven Business Cycles: Insights and Challenges. Journal of Economic Literature 52 (4). 993-1074.

[3] Benhabib, J., Farmer, R.E.A., 1999. Indeterminacy and sunspots in macroeconomics. In: J.B. Taylor, M.

Woodford (Eds.), Handbook of Macroeconomics Vol. 1A, North Holland, Amsterdam, 387-448.

[4] Blanchard, O.J., and C.M. Khan, 1980. The solution of linear difference models under rational expectations, Econometrica 48, pp 1305-1311.

[5] Farmer R.E.A. and Guo J.T., 1994. Real business cycles and the animal spirits hypothesis. Journal of Economic Theory 63, 42-72.

[6] Schmitt-Grohé, S., Uribe, M., 1997. Balanced-budget rules, distortionary taxes, and aggregate instability. Journal of Political Economy 105, 976-1000.

[7] Uhlig, H., A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily."

[8] Wen, Y., 1998. Capacity utilization under increasing returns to scale. Journal of Economic Theory 81, 7-36.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□