Expectations and Stability

Jianpo XUE
Xiamen University

July 2023

Outline

- Expectations in macroeconomics and sources of business cycles
- The role of expectations;
- Sources of business cycles.
- Basic tools: difference equations and stability of nonlinear system
- Concepts;
- First-order difference equations;
- Higher-order difference equations;
- Simultaneous difference equations.
- RBC model
- Solving for the recursive law of motion using the method of undetermined coefficients;
- RBC models with factor-generated externalities
- Monetary model with Taylor rule
- References

Expectations in macroeconomics

The role of expectations

- Central difference between economics and natural sciences: forward-looking decisions made by economic agents;
- Expectations play a key role;
- Examples: consumption theory; investment decisions; asset prices, etc.
- The role of expectations: they influence the time path of the economy, and the time path of the economy influences expectations.
- Rational expectation (RE): mathematical conditional expectation of the relevant variables;
- The expectations are conditioned on all of the information available to the decision makers

Expectations in macroeconomics

Two examples

- Example 1. Cobweb model

$$
\begin{aligned}
d_{t} & =m_{l}-m_{p} p_{t}+v_{1 t}, \\
s_{t} & =r_{l}+r_{p} p_{t}^{e}+v_{2 t}, \\
s_{t} & =d_{t},
\end{aligned}
$$

where m_{l}, m_{p}, r_{l} and r_{p} are all positive constant.

- Example 2. Cagan model

$$
m_{t}-p_{t}=-\psi\left(p_{t+1}^{e}-p_{t}\right), \psi>0 .
$$

Sources of business cycles

News view of business cycles

- Business cycles are mainly the result of agents having incentives to continuously anticipate the economy's future demands.
- If an agent can properly anticipate a future need...
- If many agents adopt similar behavior...
- However, errors are possible...
- Trace back to Pigou (1927)

The very source of fluctuations is the "wave-like swings in the mind of the business world between errors of optimism and errors of pessimism."

- Keynes' 1936 notion of animal spirits.
- Then what are optimism and pessimism in business cycles?
- an entirely psychological phenomenon?
- self-fulfilling fluctuations? The macroeconomy is inherently unstable
- news view?

Concepts on difference equations

Definition

Discrete time: time is taken to be a discrete variable (integer number, like $1,2,3 \ldots$)

Definition

First-order difference is

$$
\Delta y_{t}=y_{t+1}-y_{t}
$$

where y_{t} is the value of y in the $t^{\text {th }}$ period. Second-order difference is

$$
\Delta^{2} y_{t}=\Delta\left(\Delta y_{t}\right)=y_{t+2}-2 y_{t+1}+y_{t}
$$

Note 1: "period" - rather than point - of time. Note 2: y has a unique value in each period of time.

Concepts

Definition
Difference Equation:

$$
\Delta y_{t}=y_{t+1}-y_{t}=c
$$

or

$$
y_{t+1}-y_{t}=a y_{t}+b
$$

Note: the choice of time subscripts is arbitrary, i.e. it does not make any difference if we write it as $y_{t+1}-y_{t}=c$ or as $y_{t+2}-y_{t+1}=c$.

Solving a first-order difference equation

- Iterative method
- General method

$$
y_{t+1}+a y_{t}=c
$$

The general solution y_{t} consists of y_{p} (particular solution) and y_{c} (complementary solution)

- Complementary solution: Try $y_{t}=A b^{t}$ (A is arbitrary) and get $b=-a$.
- Particular solution: 1. if $a \neq-1$, solve $y_{p}=\frac{c}{1+a} ; 2$. if $a=-1$, solve $y_{p}=c t$.
- Get y_{t}

$$
y_{t}=y_{c}+y_{p}=\left\{\begin{array}{c}
A(-a)^{t}+\frac{c}{1+a}, a \neq-1 \\
A+c t, a=-1
\end{array}\right.
$$

- How about A ? - Determined by y_{0}.

Dynamic stability of equilibrium

- The significance of b :

$$
y_{t}=b^{t}
$$

- Nonoscillatory (oscillatory) if $b>(<) 0$;

Dynamic stability of equilibrium

- The role of A
- Scale effect: magnitude
- Mirror effect: sign
- Example: A market model with inventory

$$
\begin{gathered}
Q_{d t}=\alpha-\beta P_{t} \\
Q_{s t}=-\gamma+\delta P_{t} \\
P_{t+1}=P_{t}-\sigma\left(Q_{s t}-Q_{d t}\right),
\end{gathered}
$$

where $\alpha, \beta, \gamma, \delta, \sigma>0$. Solve the time path of P_{t}.

Non-linear difference equations: qualitative-graphic approach

Stability of Non-Linear System

Higher-order difference equations

- Second-order linear difference equations with constant coefficients and constant term

$$
y_{t+2}+a_{1} y_{t+1}+a_{2} y_{t}=c
$$

- Particular solution y_{p} : the intertemporal equilibrium level of y.
- If $a_{1}+a_{2} \neq-1$, try $y_{p}=k$ and get $k=\frac{c}{1+a_{1}+a_{2}}$;
- If $a_{1}+a_{2}=-1$ and $a_{1} \neq-2$, try $y_{p}=k t$ and get $k=\frac{c}{2+a_{1}}$;
- If $a_{1}+a_{2}=-1$ and $a_{1}=-2$, try $y_{p}=k t^{2}$ and get $k=\frac{c}{2}$.
- Complementary solution: the deviation from the equilibrium for every time period

$$
y_{t+2}+a_{1} y_{t+1}+a_{2} y_{t}=0
$$

$\operatorname{Try} y_{t}=A b^{t}$ and get the characteristic equation

$$
b^{2}+a_{1} b+a_{2}=0
$$

Higher-order difference equations

- Case 1: two distinct real roots: $a_{1}^{2}>4 a_{2}$

$$
y_{c}=A_{1} b_{1}^{t}+A_{2} b_{2}^{t}
$$

- Case 2: repeated real roots: $a_{1}^{2}=4 a_{2}$ and thus $b=b_{1}=b_{2}=-\frac{a_{1}}{2}$

$$
y_{c}=A_{3} b^{t}+A_{4} t b^{t}
$$

- Case 3: complex roots: $a_{1}^{2}<4 a_{2}$

$$
\begin{aligned}
b_{1,2} & =h \pm v i, \text { where } h=-\frac{a_{1}}{2} \text { and } v=\frac{\sqrt{4 a_{2}-a_{1}^{2}}}{2} \\
y_{c} & =A_{1} b_{1}^{t}+A_{2} b_{2}^{t}=A_{1}(h+v i)^{t}+A_{2}(h-v i)^{t}
\end{aligned}
$$

Higher-order difference equations

- Because $(h \pm v i)^{t}=R^{t}(\cos \theta t \pm i \sin \theta t)$ where $R=\sqrt{h^{2}+v^{2}}=\sqrt{a_{2}}, \cos \theta=\frac{h}{R}=-\frac{a_{1}}{2 \sqrt{a_{2}}}$ and $\sin \theta=\frac{v}{R}=\sqrt{1-\frac{a_{1}^{2}}{4 a_{2}}}$, we have

$$
y_{c}=R^{t}\left(A_{5} \cos \theta t+A_{6} \sin \theta t\right) .
$$

Convergence of the time path

- Distinct roots
- Dominant root: the root with the higher absolute value
- A time path will be convergent iff the dominant root is less than 1 in absolute value
- Repeated roots: if $|b|<1$, we have convergence
- Complex roots:
- if $R<1$, i.e. $|b|<1$, we have damped stepped fluctuation
- if $R>1$, i.e. $|b|>1$, we have explosive stepped fluctuation

Simultaneous difference equations

- Relation between higher-order difference equation and simultaneous difference equations

$$
y_{t+2}+a_{1} y_{t+1}+a_{2} y_{t}=c
$$

Define $x_{t}=y_{t+1}$. We will have

$$
\begin{aligned}
x_{t+1}+a_{1} x_{t}+a_{2} y_{t} & =c, \\
y_{t+1} & =x_{t} .
\end{aligned}
$$

In matrix form, it is

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
-a_{1} & -a_{2} \\
1 & 0
\end{array}\right)\binom{x_{t}}{y_{t}}+\binom{c}{0} .
$$

- Simultaneous difference equations

$$
X_{t+1}=A X_{t}+b
$$

where $X_{t}=\left(x_{1 t}, x_{2 t}, \ldots x_{n t}\right)^{\prime}, A$ is a constant matrix with coefficients $a_{i j}, i, j=1 \ldots n$, and $b=\left(b_{1}, b_{2}, \ldots b_{n}\right)^{\prime}$.

Simultaneous difference equations

- Particular solution: $x_{t+1}=x_{t}=x$ and $y_{t+1}=y_{t}=y$;
- Complementary solution: substituting $x_{t}=m b^{t}$ and $y_{t}=n b^{t}$, we have the characteristic equation and the characteristic roots b_{1} and b_{2}.
- Characteristic equation

$$
p(b)=|A-b| \mid=b^{2}-\mathcal{T} b+\mathcal{D}=0,
$$

where \mathcal{T} and \mathcal{D} are the trace and determinant of matrix A.

- Moreover, we know that

$$
\begin{gathered}
\mathcal{T}=b_{1}+b_{2}, \quad \mathcal{D}=b_{1} b_{2} \\
p(b)=\left(b-b_{1}\right)\left(b-b_{2}\right)
\end{gathered}
$$

Stability property

Stability Triangle

Stability property

- Red line: $\Delta=\mathcal{T}^{2}-4 \mathcal{D}=0$
- Region above the red line: $\Delta<0 \Rightarrow$ complex roots;
- Region below the red line: $\Delta>0 \Rightarrow$ real roots;
- Blue lines: $p(1)=1-\mathcal{T}+\mathcal{D}=0$ and $p(-1)=1+\mathcal{T}+\mathcal{D}=0$
- Region above (below) the right blue line: $p(1)>(<) 0$;
- Region above (below) the left blue line: $p(-1)>(<) 0$;
- Green line: $D=1$
- Region above the green line: $|b|>1$;
- Region below the green line: $|b|<1$.

Stability property

Region	$p\left(b_{i}\right)$	b_{i}	Stability
1	$p(1)<0, p(-1)>0$	$\left\|b_{1}\right\|<1, b_{2}>1$	saddle
2	$p(1)<0, p(-1)<0$	$b_{1} b_{2}<0,\left\|b_{i}\right\|>1$	explosive
3	$p(1)>0, p(-1)<0$	$\left\|b_{1}\right\|<1, b_{2}<-1$	saddle
4	$p(1)>0, p(-1)>0$	$b_{i}<-1$	explosive
5	$\mathcal{D}>1, \mathcal{T}<-2$	$\left\|b_{i}\right\|>1$	explosive
6	$\Delta<0, \mathcal{D}>1$	$\left\|b_{i}\right\|<1$	stable
7	$\Delta<0, \mathcal{D}<1$	$\left\|b_{i}\right\|<1$	stable
7	$p(1)>0, p(-1)>0$		explosive
8	$p(1)>0, p(-1)>0$	$b_{i}>1$	

Stability property

- Conditions for a saddle: $p(1)<0, p(-1)>0$ or $p(1)>0$, $p(-1)<0$

$$
\begin{aligned}
& 1-\mathcal{T}+\mathcal{D}<0 \text { and } 1+\mathcal{T}+\mathcal{D}>0 ; \text { or } \\
& 1-\mathcal{T}+\mathcal{D}>0 \text { and } 1+\mathcal{T}+\mathcal{D}<0
\end{aligned}
$$

Or equivalent as

$$
|\mathcal{T}|>|1+\mathcal{D}|
$$

- Conditions for two stable roots: $\Delta<0, \mathcal{D}<1$ or $p(1)>0$, $p(-1)>0, \mathcal{D}<1$

$$
\mathcal{D}<1,1-\mathcal{T}+\mathcal{D}>0 \text { and } 1+\mathcal{T}+\mathcal{D}>0
$$

i.e.

$$
\mathcal{D}<1 \text { and }|\mathcal{T}|<1+\mathcal{D}
$$

Stability property

Local Uniqueness/Multiplicity

Definition

Predetermined variable: the variable whose initial value is given, as k, h, and b;

Definition

Jump variable: the variable whose initial value is not given, as c, I, and p (sometimes).

Theorem
Conditions for local uniqueness/multiplicity:

1. If the number of stable roots $=$ the number of predetermined variables \Rightarrow Saddle path (Determinacy);
2. If the number of stable roots $<$ the number of predetermined variables \Rightarrow Source (Explosive);
3. If the number of stable roots $>$ the number of predetermined variables \Rightarrow Sink (Indeterminacy).

Solve for the recursive law of motion with method of

 undetermined coefficients.State variables: $\hat{k}_{t-1}, \hat{z}_{t}$
The dynamics of the model should be described by recursive laws of motion in terms of the state variables,

$$
\begin{aligned}
& \hat{k}_{t}=v_{k k} \hat{k}_{t-1}+v_{k z} \hat{z}_{t}, \\
& \hat{c}_{t}=v_{c k} \hat{k}_{t-1}+v_{c z} \hat{z}_{t} .
\end{aligned}
$$

We need to solve for $v_{k k}, v_{k z}, v_{c k}$ and $v_{c z}$, the "undetermined" coefficients.
Coefficient interpretation: elasticities.
Recall: the log-linearized system consists of

$$
\begin{gathered}
\hat{k}_{t}=\frac{1}{\beta} \hat{k}_{t-1}-\frac{\bar{C}}{\bar{K}} \hat{c}_{t}+\frac{\widetilde{\delta}}{\alpha \beta} \hat{z}_{t} \\
\sigma \mathrm{E}_{t} \hat{c}_{t+1}+\widetilde{\delta}(1-\alpha) \hat{k}_{t}-\widetilde{\delta} \mathrm{E}_{t} \hat{z}_{t+1}=\sigma \hat{c}_{t} \\
\hat{z}_{t}=\psi \hat{z}_{t-1}+\varepsilon_{t} .
\end{gathered}
$$

Recursivity

- Substitute the postulated linear recursive law of motion into the dynamic equations until only \hat{k}_{t-1} and \hat{z}_{t} remain. E.g.

$$
\begin{gathered}
\mathrm{E}_{t} \hat{z}_{t+1}=\psi \hat{z}_{t} \\
\mathrm{E}_{t} \hat{c}_{t+1}=\mathrm{E}_{t}\left(v_{c k} \hat{k}_{t}+v_{c z} \hat{z}_{t+1}\right) \\
=v_{c k}\left(v_{k k} \hat{k}_{t-1}+v_{k z} \hat{z}_{t}\right)+v_{c z} \psi \hat{z}_{t} \\
=v_{c k} v_{k k} \hat{k}_{t-1}+\left(v_{c k} v_{k z}+v_{c z} \psi\right) \hat{z}_{t}
\end{gathered}
$$

- Compare coefficients.

Recursivity

For the first equation (budget constraint)

$$
\begin{aligned}
& \hat{k}_{t}=\frac{1}{\beta} \hat{k}_{t-1}-\frac{\bar{C}}{\bar{K}} \hat{c}_{t}+\frac{\widetilde{\delta}}{\alpha \beta} \hat{z}_{t}, \\
& v_{k k} \hat{k}_{t-1}+v_{k z} \hat{z}_{t}=\frac{1}{\beta} \hat{k}_{t-1}-\frac{\bar{C}}{\bar{K}}\left(v_{c k} \hat{k}_{t-1}+v_{c z} \hat{z}_{t}\right)+\frac{\tilde{\delta}}{\alpha \beta} \hat{z}_{t}, \\
&\left(\frac{1}{\beta}-\frac{\bar{K}}{\bar{K}} v_{c k}-v_{k k}\right) \hat{k}_{t-1}+\left(\frac{\widetilde{\delta}}{\alpha \beta}-\frac{\bar{C}}{\bar{K}} v_{c z}-v_{k z}\right) \hat{z}_{t}=0 .
\end{aligned}
$$

Comparing coefficients: since the equation has to be satisfied for any value of \hat{k}_{t-1} and \hat{z}_{t}, we have
$\begin{aligned} \text { for } \hat{k}_{t-1}: & & v_{k k} & =\frac{1}{\beta}-\frac{\bar{C}}{\bar{K}} v_{c k} \\ \text { for } \hat{z}_{t} & : & v_{k z} & =\frac{\tilde{\delta}}{\alpha \beta}-\frac{\bar{C}}{\bar{K}} v_{c z}\end{aligned}$

Recursivity

For the second equation (Euler equation/asset pricing)

$$
\begin{gathered}
\sigma \mathrm{E}_{t} \hat{c}_{t+1}+\widetilde{\delta}(1-\alpha) \mathrm{E}_{t} \hat{k}_{t}-\widetilde{\delta} \mathrm{E}_{t} \hat{z}_{t+1}=\sigma \hat{c}_{t}, \\
=\sigma\left[v_{c k} v_{k k} \hat{k}_{t-1}+\left(v_{c k} v_{k z}+v_{c z} \psi\right) \hat{z}_{t}\right]+\widetilde{\delta}(1-\alpha)\left(v_{k k} \hat{k}_{t-1}+v_{k z} \hat{z}_{t}\right) \\
=\sigma\left(v_{c k} \hat{k}_{t-1}+v_{c z} \hat{z}_{t}\right), \\
\\
{\left[\sigma v_{c k} v_{k k}+\widetilde{\delta}(1-\alpha) v_{k k}-\sigma v_{c k}\right] \hat{k}_{t-1}+} \\
=\left[\sigma\left(v_{c k} v_{k z}+v_{c z} \psi\right)+\widetilde{\delta}(1-\alpha) v_{k z}-\widetilde{\delta} \psi-\sigma v_{c z}\right] \hat{z}_{t} \\
0
\end{gathered}
$$

Comparing coefficients, we have for $\hat{k}_{t-1}: \quad \sigma v_{c k}\left(1-v_{k k}\right)=\widetilde{\delta}(1-\alpha) v_{k k}$, for $\hat{z}_{t}: \quad \sigma v_{c z}(1-\psi)=\left[\sigma v_{c k}+\widetilde{\delta}(1-\alpha)\right] v_{k z}-\widetilde{\delta} \psi$.

Comparing coefficients

Collecting the results, and comparing coefficients on \hat{k}_{t-1},

$$
\begin{gather*}
\sigma v_{c k}\left(1-v_{k k}\right)=\widetilde{\delta}(1-\alpha) v_{k k} \tag{1}\\
v_{k k}=\frac{1}{\beta}-\frac{\bar{C}}{\bar{K}} v_{c k} \tag{2}
\end{gather*}
$$

To solve $v_{k k}$, we substitute $v_{c k}$ and obtain a quadratic equation

$$
v_{k k}^{2}-\left[1+\frac{1}{\beta}-\frac{\widetilde{\delta}(1-\alpha)}{\sigma} \frac{\bar{C}}{\bar{K}}\right] v_{k k}+\frac{1}{\beta}=0
$$

Solving the quadratic equation

$$
0=v_{k k}^{2}-\gamma v_{k k}+\frac{1}{\beta},
$$

where

$$
\gamma=1+\frac{1}{\beta}+\frac{\widetilde{\delta}(1-\alpha)}{\sigma} \frac{1-[1-(1-\alpha) \delta] \beta}{\alpha \beta} .
$$

The solution is a high school math problem:

$$
v_{k k}=\frac{\gamma}{2}-\sqrt{\left(\frac{\gamma}{2}\right)^{2}-\frac{1}{\beta}}
$$

Why we delete the root

$$
\frac{\gamma}{2}+\sqrt{\left(\frac{\gamma}{2}\right)^{2}-\frac{1}{\beta}} \cdot ?
$$

Solving the quadratic equation

$$
\begin{aligned}
&\left(v_{k k}-\lambda_{1}\right)\left(v_{k k}-\lambda_{2}\right)=0, \\
& v_{k k}^{2}-\left(\lambda_{1}+\lambda_{2}\right) v_{k k}+\lambda_{1} \lambda_{2}=0, \\
& \lambda_{1} \lambda_{2}=\frac{1}{\beta}>1, \\
& \lambda_{1}+\lambda_{2}=\gamma>1+\frac{1}{\beta}, \\
& \text { hence, } \lambda_{1}+\lambda_{2}>1+\lambda_{1} \lambda_{2}, \\
&\left(1-\lambda_{1}\right)\left(\lambda_{2}-1\right)>0 .
\end{aligned}
$$

so λ_{1} and λ_{2} both positive, one root >1, and the other root <1. We need to delete the explosive solution!

Solving the quadratic equation

Once $v_{k k}$ is solved, the others can be solved easily. Plugging it into equation (2),

$$
v_{c k}=\left(\frac{\widetilde{\delta}}{\alpha \beta}-\delta\right)\left(\frac{1}{\beta}-v_{k k}\right)
$$

we get $v_{c k}$.

Solving the quadratic equation

Then for coefficients on \hat{z}_{t}

$$
\begin{align*}
v_{k z} & =\left(\delta-\frac{\widetilde{\delta}}{\alpha \beta}\right) v_{c z}+\frac{\widetilde{\delta}}{\alpha \beta} \tag{3}\\
\sigma v_{c z}(1-\psi) & =\left[\sigma v_{c k}+\widetilde{\delta}(1-\alpha)\right] v_{k z}-\widetilde{\delta} \psi \tag{4}
\end{align*}
$$

i.e.

$$
v_{c z}=\frac{\sigma v_{c k}+\widetilde{\delta}(1-\alpha)-\alpha \beta \psi}{\sigma(1-\psi)-\left[\sigma v_{c k}+\widetilde{\delta}(1-\alpha)\right]\left(\delta-\frac{\widetilde{\delta}}{\alpha \beta}\right)} \frac{\widetilde{\delta}}{\alpha \beta},
$$

where $v_{c k}$ is known. Substituting $v_{c z}$ into (3), we solve $v_{k z}$.

Solving the quadratic equation

We could obtain

$$
\begin{aligned}
\hat{k}_{t} & =v_{k k} \hat{k}_{t-1}+v_{k z} \hat{z}_{t} \\
\hat{c}_{t} & =v_{c k} \hat{k}_{t-1}+v_{c z} \hat{z}_{t} \\
\hat{z}_{t} & =\psi \hat{z}_{t-1}+\varepsilon_{t},
\end{aligned}
$$

where

$$
\begin{gathered}
v_{k k}=\frac{\gamma}{2}-\sqrt{\left(\frac{\gamma}{2}\right)^{2}-\frac{1}{\beta}}, v_{c k}=\left(\frac{\widetilde{\delta}}{\alpha \beta}-\delta\right)\left(\frac{1}{\beta}-v_{k k}\right) \\
v_{c z}=\frac{\sigma v_{c k}+\widetilde{\delta}(1-\alpha)-\alpha \beta \psi}{\sigma(1-\psi)-\left[\sigma v_{c k}+\widetilde{\delta}(1-\alpha)\right]\left(\delta-\frac{\widetilde{\delta}}{\alpha \beta}\right)} \frac{\widetilde{\delta}}{\alpha \beta} \\
v_{k z}=\left(\delta-\frac{\widetilde{\delta}}{\alpha \beta}\right) v_{c z}+\frac{\widetilde{\delta}}{\alpha \beta}
\end{gathered}
$$

Calibration and simulation

Assuming quarterly data with

$$
\begin{array}{ll}
\beta=0.99 & \alpha=0.36 \\
\sigma=1.0 & \delta=0.025 \\
\bar{Z}=1 & \psi=0.95
\end{array}
$$

Then we get...

Calibration and simulation

- Impulse response analysis: trace out all variables for $\varepsilon_{1}=1$, $\varepsilon_{t}=0$ for $t>1$, when starting from the steady state.
- Because

$$
\hat{z}_{t}=\psi \hat{z}_{t-1}+\varepsilon_{t}
$$

we have

$$
\begin{gathered}
\hat{z}_{1}=\psi \hat{z}_{0}+\varepsilon_{1}=\varepsilon_{1}, \\
\hat{z}_{2}=\psi \hat{z}_{1}+\varepsilon_{2}=\psi \varepsilon_{1}, \\
\hat{z}_{j}=\psi^{j-1} \varepsilon_{1} .
\end{gathered}
$$

and

$$
\begin{gathered}
\hat{k}_{1}=v_{k k} \hat{k}_{0}+v_{k z} \hat{z}_{1}=v_{k z} \varepsilon_{1}, \\
\hat{k}_{2}=v_{k k} \hat{k}_{1}+v_{k z} \hat{z}_{2}=v_{k k} v_{k z} \varepsilon_{1}+v_{k z} \psi \varepsilon_{1}=\left(v_{k k}+\psi\right) v_{k z} \varepsilon_{1}, \\
\hat{k}_{j}=v_{k k} \hat{k}_{j-1}+v_{k z} \psi^{j-1} \varepsilon_{1}=\sum_{i=0}^{j-1}\left(v_{k k}^{i} \psi^{j-i-1}\right) v_{k z} \varepsilon_{1} .
\end{gathered}
$$

Calibration and simulation

Impulse response functions

RBC models with factor-generated externalities

Terminologies

- (local) indeterminacy - infinite number of equilibrium paths converging to the same steady state.
- Sunspot equilibria (Shell, 1977; Cass and Shell, 1983): self-fulfilling expectations; self-fulfilling prophecies
- agents receive different allocations across states with identical fundamentals
- equilibrium allocations influenced by purely extrinsic belief shocks in general equilibrium models;
- agents have identical fundamentals: preferences, endowments and technology;
- agents have different consumption and/or production;
- cannot occur under Arrow-Debreu structure.
- indeterminacy implies the existence of stationary sunspot equilibria.
- existence of sunspot equilibria implies economy can fluctuate in the absence of schocks to fundamentals.
- use indeterminacy, sunspots, self-fulfilling expectations, self-fulfilling prophecies interchangeablv.

RBC models with factor-generated externalities

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);

RBC models with factor-generated externalities

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);
- Monetary transmission mechanism: MIU model in Calvo (1979), Money in the production function model in Benhabib and Farmer (1996), CIA model in Cooley and Hansen (1989, 1991);

RBC models with factor-generated externalities

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);
- Monetary transmission mechanism: MIU model in Calvo (1979), Money in the production function model in Benhabib and Farmer (1996), CIA model in Cooley and Hansen (1989, 1991);
- Policy Feedback: Fiscal policy (Leeper, 1991; Leith and Thadden, 2008), Monetary policy (Leeper, 1991; Dupor, 2001; Carlstrom and Fuerst, 2005, Huang, Meng and Xue, 2009, 2018, 2019);

RBC models with factor-generated externalities

Some strands of literature

- Business cycles: the role of beliefs in business fluctuations, Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998), Benhabib and Farmer (1996), Benhabib, Meng and Nishimura (2000);
- Monetary transmission mechanism: MIU model in Calvo (1979), Money in the production function model in Benhabib and Farmer (1996), CIA model in Cooley and Hansen (1989, 1991);
- Policy Feedback: Fiscal policy (Leeper, 1991; Leith and Thadden, 2008), Monetary policy (Leeper, 1991; Dupor, 2001; Carlstrom and Fuerst, 2005, Huang, Meng and Xue, 2009, 2018, 2019);
- Endogenous economic growth: Benhabib and Perli (1994), Xie (1994), Mino (2001);

With factor-generated externalities

- Benhabib-Farmer-Guo model, the representative agent solves

$$
\begin{equation*}
\max \sum_{t=0}^{\infty} E_{t} \rho^{t}\left(\frac{C_{t}^{1-\sigma}-1}{1-\sigma}-\frac{L_{t}^{1+\chi}}{1+\chi}\right) \tag{5}
\end{equation*}
$$

subject to

$$
\begin{equation*}
C_{t}+K_{t+1} \leq(1-\delta) K_{t}+Y_{t} \text { and } Y_{t}=A_{t} K_{t}^{a} L_{t}^{b} \tag{6}
\end{equation*}
$$

where $a+b=1$, and $A_{t}=\bar{K}_{t}^{\alpha-a} \bar{L}_{t}^{\beta-b}$.

- Wen (1996): capacity utilization;

$$
y_{t}=\bar{e}_{t}\left(u_{t} K_{t}\right)^{\alpha} L_{t}^{1-\alpha}, \text { where } \bar{e}_{t}=\left(\bar{u}_{t} \bar{K}_{t}\right)^{\gamma \theta} \bar{L}_{t}^{(1-\gamma) \theta},
$$

where

$$
\dot{K}_{t}=I_{t}-\delta_{t} K_{t} \text { and } \delta_{t}=\tau u_{t}^{\eta}
$$

- Benhabib and Farmer (1996): two-sector model with sector-specific externalities.

$$
y_{t}^{j}=\left[\left(K_{t}^{j}\right)^{\alpha}\left(L_{t}^{j}\right)^{1-\alpha}\right]^{\theta_{j}}\left[K_{t}^{\alpha} L_{t}^{1-\alpha}\right]^{\sigma_{j}}\left(K_{t}^{j}\right)^{\alpha}\left(H_{t}^{j}\right)^{1-\alpha}, \text { where } j=I, C
$$

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
- Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
- Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;
- Endogenous investment:

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
- Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;
- Endogenous investment:
- Rental market for capital: Carlstrom and Fuerst (2005);

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
- Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;
- Endogenous investment:
- Rental market for capital: Carlstrom and Fuerst (2005);
- Firm-specific capital: Woodford (2003); Sveen and Weinke (2005, 2007); Kurozumi and Van Zandweghe (2008); Huang, Meng and Xue (2009); Duffy and Xiao (2011);

Monetary model and Taylor rule

- Recent expanding literature on monetary policy design and multiple equilibria (indeterminacy).
- A monetary policy rule is properly designed and desirable if it can lead the economy to determinacy.
- Taylor principle: stablizing rule-based monetary policy requires a more-than-proportional adjustment in the central bank's target interest rate in response to the change of inflation.
- Labor-only economy:
- Woodford (2001, 2003): imperfect competition and Calvo-type staggered prices;
- Endogenous investment:
- Rental market for capital: Carlstrom and Fuerst (2005);
- Firm-specific capital: Woodford (2003); Sveen and Weinke (2005, 2007); Kurozumi and Van Zandweghe (2008); Huang, Meng and Xue (2009); Duffy and Xiao (2011);
- Increasing returns-to-scale: Duffy and Xiao (2008); Huang and Meng (2009).

Overview of the dynamic NK model

- DSGE structure (as RBC model)

Overview of the dynamic NK model

- DSGE structure (as RBC model)
- an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)

Overview of the dynamic NK model

- DSGE structure (as RBC model)
- an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
- a large number of firms (with identical technology, subject to exogenous random shocks)

Overview of the dynamic NK model

- DSGE structure (as RBC model)
- an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
- a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks

Overview of the dynamic NK model

- DSGE structure (as RBC model)
- an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
- a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks
- AD block: the (log-linearised) consumption Euler equation

$$
x_{t}=\mathrm{E}_{t}\left(x_{t+1}\right)-\frac{1}{\sigma}\left(i_{t}-\mathrm{E}_{t}\left(\pi_{t+1}\right)\right)+u_{t}
$$

Overview of the dynamic NK model

- DSGE structure (as RBC model)
- an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
- a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks
- AD block: the (log-linearised) consumption Euler equation

$$
x_{t}=\mathrm{E}_{t}\left(x_{t+1}\right)-\frac{1}{\sigma}\left(i_{t}-\mathrm{E}_{t}\left(\pi_{t+1}\right)\right)+u_{t}
$$

- AS block: the "New Keynesian Phillips Curve"

$$
\pi_{t}=\beta \mathrm{E}_{t}\left(\pi_{t+1}\right)+\kappa x_{t}
$$

Overview of the dynamic NK model

- DSGE structure (as RBC model)
- an infinitely-lived representative household (max. utility from consumption and leisure, subject to an intertemporal budget constraint)
- a large number of firms (with identical technology, subject to exogenous random shocks)
- AD and AS blocks
- AD block: the (log-linearised) consumption Euler equation

$$
x_{t}=\mathrm{E}_{t}\left(x_{t+1}\right)-\frac{1}{\sigma}\left(i_{t}-\mathrm{E}_{t}\left(\pi_{t+1}\right)\right)+u_{t}
$$

- AS block: the "New Keynesian Phillips Curve"

$$
\pi_{t}=\beta \mathrm{E}_{t}\left(\pi_{t+1}\right)+\kappa x_{t}
$$

- Policy rule

$$
i_{t}=f\left(\Omega_{t}\right)+v_{t}
$$

References

[1] Chiang and Wainwright (2005), Chapter 17-19;
[2] Beaudry, P., and F. Portier. 2014. News-Driven Business Cycles: Insights and Challenges. Journal of Economic
Literature 52 (4), 993-1074.
[3] Benhabib, J., Farmer, R.E.A., 1999. Indeterminacy and sunspots in macroeconomics. In: J.B. Taylor, M.
Woodford (Eds.), Handbook of Macroeconomics Vol. 1A, North Holland, Amsterdam, 387-448.
[4] Blanchard, O.J., and C.M. Khan, 1980. The solution of linear difference models under rational expectations,
Econometrica 48, pp 1305-1311.
[5] Farmer R.E.A. and Guo J.T., 1994. Real business cycles and the animal spirits hypothesis. Journal of Economic Theory 63, 42-72.
[6] Schmitt-Grohé, S., Uribe, M., 1997. Balanced-budget rules, distortionary taxes, and aggregate instability. Journal of Political Economy 105, 976-1000.
[7] Uhlig, H., A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily."
[8] Wen, Y., 1998. Capacity utilization under increasing returns to scale. Journal of Economic Theory 81, 7-36.

