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◼ In the Manual 2SLS procedure, you estimate the 
first stage yourself, and plug the fitted values into 
the second stage equation, which is then estimated 
by OLS

𝑠𝑖 = 𝜋10𝑋𝑖
′ + 𝜋11

′ 𝑍𝑖 + 𝜉1𝑖
𝑌𝑖 = 𝑎′𝑋𝑖 + 𝜌 Ƹ𝑠𝑖 + [𝜂𝑖 + 𝜌 𝑆𝑖 − Ƹ𝑠𝑖 ]

◼ 𝑋𝑖 is a set of covariates, 𝑍𝑖 is a set of excluded 
instruments, and the first stage fitted values are

Ƹ𝑠𝑖 = 𝑋𝑖
′𝜋10+𝜋11

′ 𝑍𝑖

4.6.1 2SLS Mistakes
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◼ Example: Constructing 2SLS estimates of a wage 
equation that treats AFQT scores as an endogenous 
control variable to be instrumented.

◼ The instruments for AFQT are early schooling 
(completed before military service), race, and family 
background variables.

𝑠𝑖 = 𝜋10𝑋0𝑖
′ + 𝜋11

′ 𝑍𝑖 + 𝜉1𝑖
𝑌𝑖 = 𝛼0

′𝑋0𝑖 + 𝛼0
′𝑋1𝑖 + 𝜌 Ƹ𝑠𝑖 + [𝜂𝑖 + 𝜌 𝑆𝑖 − Ƹ𝑠𝑖 ]

4.6.1 2SLS Mistakes with Covariate Ambivalence
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◼ Example:

The causal model of interest: 𝑌𝑖 = 𝑎′𝑋𝑖 + 𝜌𝐷𝑖 + 𝜂𝑖

The usual 2SLS first stage 𝐷𝑖 = 𝜋10
′ 𝑋𝑖 + 𝜋11

′ 𝑍𝑖 + 𝜉1𝑖

◼ Suppose that we use Probit to model 𝐸 𝐷𝑖 𝑋𝑖, 𝑍𝑖], 
The Probit first stage is 

෡D𝑝𝑖 = Φ[𝑋𝑖
′𝜋𝑝0+𝜋𝑝1

′ 𝑍𝑖]

◼ In the second stage, substitute ෡D𝑝𝑖 for 𝐷𝑖
𝑌𝑖 = 𝑎′𝑋𝑖 + 𝜌෡D𝑝𝑖 + [𝜂𝑖 + 𝜌 𝐷𝑖 − ෡D𝑝𝑖 ]

4.6.1 2SLS Mistakes with Forbidden Regressions
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◼ A simple alternative:

◼ Instead of plugging in nonlinear fitted values, we 
can use the nonlinear fitted values as instruments.

◼ Advantage: if the nonlinear model gives a better 
approximation of the first-stage CEF than the linear 
model, the resulting 2SLS estimates will be more 
efficient than those using a linear first stage.

◼ Disadvantage: it implicitly uses nonlinearities in the 
first stage as a source of identifying information..

4.6.1 2SLS Mistakes with Forbidden Regressions
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◼ Example: the causal relation between schooling and 
earnings is approximately quadratic

𝑌𝑖 = 𝑎′𝑋𝑖 + 𝜌1𝑠𝑖 + 𝜌1𝑠𝑖
2 + 𝜂𝑖

◼ This model treats both 𝑠𝑖 and 𝑠𝑖
2 as endogenous. In 

this case, there are two first-stage equations, one for 
𝑠𝑖 and one for 𝑠𝑖

2

◼ It’s natural to use 𝑍𝑖 and its square (unless 𝑍𝑖 is a 
dummy)

4.6.1 2SLS Mistakes with Forbidden Regressions
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◼ Or maybe we can work with a single first stage
𝑌𝑖 = 𝑎′𝑋𝑖 + 𝜌1 Ƹ𝑠𝑖 + 𝜌2 Ƹ𝑠𝑖

2 + [𝜂𝑖 + 𝜌1 𝑆𝑖 − Ƹ𝑠𝑖 + 𝜌2(𝑆𝑖
2 − Ƹ𝑠𝑖

2)]

◼ This is a mistake since Ƹ𝑠𝑖 can be correlated with 

𝑆𝑖
2 − Ƹ𝑠𝑖

2 while Ƹ𝑠𝑖
2 can be correlated with both 𝑆𝑖 − Ƹ𝑠𝑖

and 𝑆𝑖
2 − Ƹ𝑠𝑖

2

◼ On the other hand, as long as 𝑋𝑖 and 𝑍𝑖 are 
uncorrelated with 𝜂𝑖 , and you have enough 
instruments in 𝑍𝑖 , 2SLS estimation of is 
straightforward.

4.6.1 2SLS Mistakes with Forbidden Regressions
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◼ Peer Effects means the causal effect of group 
characteristics on individual outcomes.

◼ There are two types of peer effects. The first 
concerns the effect of group characteristics such as 
the average schooling in a state or city on 
individually-measured outcome variable.

◼ The second is the effect of the group average of a 
variable on the individual level of this same 
variable.

4.6.2 Peer Effects

9



◼ The first type links the average of one variable to 
individual outcomes as described by another 
variable.

◼ Example: whether a given individual’s earnings are 
affected by the average schooling in his or her state 
of residence.

𝑌𝑖𝑗𝑡 = 𝛿𝑗 + 𝜆𝑡 + 𝛾 ҧ𝑆𝑗𝑡 + 𝜌𝑠𝑖 + 𝑢𝑗𝑡 + 𝜂𝑖𝑗𝑡

4.6.2 Peer Effects
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𝑌𝑖𝑗𝑡 = 𝛿𝑗 + 𝜆𝑡 + 𝛾 ҧ𝑆𝑗𝑡 + 𝜌𝑠𝑖 + 𝑢𝑗𝑡 + 𝜂𝑖𝑗𝑡

◼ A simpler version:

𝑌𝑖𝑗 = 𝜇 + 𝜋0𝑠𝑖 + 𝜋1 ҧ𝑆𝑗 + 𝑉𝑖

◼ Where 𝐸 𝑉𝑖𝑠𝑖 = 𝐸 𝑉𝑖 ҧ𝑆𝑗 = 0

◼ 𝑌𝑖𝑗 is the log weekly wage of individual 𝑖 in state 𝑗

◼ ҧ𝑆𝑗 is average schooling in the state

4.6.2 Peer Effects
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◼ Let 𝜌0 denote the coefficient from a bivariate 
regression of 𝑌𝑖𝑗 on 𝑠𝑖 only 

◼ Let 𝜌1 denote the coefficient from a bivariate 
regression of 𝑌𝑖𝑗 on ҧ𝑆𝑗 only

𝜋0 = 𝜌1 + 𝜙(𝜌0 − 𝜌1)

𝜋1 = 𝜙(𝜌1 − 𝜌0)

◼ Where 𝜙 =
1

1−𝑅2
> 1, and 𝑅2 is the first-stage R-

squared

4.6.2 Peer Effects
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◼ The second type is not really an IV problem; it 
takes us back to basic regression issues

◼ Example: peer effect in high school graduation rates

𝑆𝑖𝑗 = 𝜇 + 𝜋2 ҧ𝑆𝑗 + 𝜉𝑖𝑗

◼ where 𝑆𝑖𝑗 is individual i’s high school graduation 

status and ҧ𝑆𝑗 is the average high school graduation 

rate in school 𝑗, which 𝑖 attends.

◼ The regression of 𝑆𝑖𝑗 on ҧ𝑆𝑗 always has a coefficient 

of 1

4.6.2 Peer Effects
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◼ A modestly improved version of the bad peer 
regression

𝑆𝑖𝑗 = 𝜇 + 𝜋4 ҧ𝑆(𝑖)𝑗 + 𝜉𝑖𝑗

◼ Where ҧ𝑆(𝑖)𝑗 is the mean of 𝑆𝑖𝑗 in school 𝑗, excluding 

student 𝑖

◼ But it’s still problematic because 𝑆𝑖𝑗 and ҧ𝑆(𝑖)𝑗 are 

both affected by school-level random shocks

4.6.2 Peer Effects
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◼ The best shot focuses on variation in ex ante peer 
characteristics

◼ Example: The link between classmates’ family 
background, as measured by the number of books 
in their homes, and student achievement in 
European primary schools.

𝑆𝑖𝑗 = 𝜇∗ + 𝜋4 ത𝐵(𝑖)𝑗 + 𝜉𝑖𝑗

◼ Where ത𝐵(𝑖)𝑗 is the average number of books in the 

home of student i’s peers

4.6.2 Peer Effects
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◼ Another Example:

◼ The impact of bused-in low-achieving newcomers 
on high-achieving residents’ test scores

𝑆𝑖𝑗 = 𝜇 + 𝜋3 ഥ𝑚𝑗 + 𝜉𝑖𝑗

◼ Where ഥ𝑚𝑗 is the number of bused-in low-achievers 

in school 𝑗 and 𝑆𝑖𝑗 is resident-student 𝑖’s test score

4.6.2 Peer Effects
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◼ 2SLS is not the only way to go

◼ An alternative more elaborate approach tries to 
build up a causal story by describing the process 
generating LDVs in detail

◼ Example: Bivariate Probit

◼ Suppose that a woman decides to have a third child 
by comparing costs and benefits using a net benefit 
function or latent index that is linear in covariates 
and excluded instruments, with a random 
component or error term, 𝑣𝑖

4.6.3 Limited Dependent Variables Reprise
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◼ The bivariate Probit first stage can be written

𝐷𝑖 = 1 𝑋𝑖
′𝛾0 + 𝛾1𝑧𝑖 > 𝑣𝑖

◼ Where 𝑧𝑖 is an instrumental variable that increases 
the benefit of a third child, conditional on covariates, 
𝑋𝑖

◼ An outcome of primary interest in this context is 
employment status, a Bernoulli random variable 
with a conditional mean between zero and one.

𝑌𝑖 = 1 𝑋𝑖
′𝛽0 + 𝛽1𝐷𝑖 > 𝜀𝑖

◼ Where 𝜀𝑖 is a second random component or error 
term

4.6.3 Limited Dependent Variables Reprise
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◼ The source of omitted variables bias in the bivariate 
Probit setup is correlation between 𝑣𝑖 and 𝜀𝑖

◼ So the parameters can be estimated by maximum 
likelihood

෍𝑌𝑖 lnΦ𝑏 (
𝑋𝑖
′𝛽0 + 𝛽1𝐷𝑖

𝜎𝜀
,
𝑋𝑖
′𝛾0 + 𝛾1𝑍𝑖

𝜎𝑣
; 𝜌𝜀𝑣) + 1 − 𝑌𝑖 ln[1

− Φ𝑏

𝑋𝑖
′𝛽0 + 𝛽1𝐷𝑖

𝜎𝜀
,
𝑋𝑖
′𝛾0 + 𝛾1𝑍𝑖

𝜎𝑣
; 𝜌𝜀𝑣 ]

4.6.3 Limited Dependent Variables Reprise

19



◼ The potential outcomes defined by the bivariate 
Probit model are

◼ 𝑌0𝑖 = 1 𝑋𝑖
′𝛽0 > 𝜀𝑖 and 𝑌1𝑖 = 1 𝑋𝑖

′𝛽0 + 𝛽1 > 𝜀𝑖

◼ While potential treatment assignments are

◼ 𝐷0𝑖 = 1 𝑋𝑖
′𝛾0 > 𝑣𝑖 and 𝐷1𝑖 = 1 𝑋𝑖

′𝛾0 + 𝛾1 > 𝑣𝑖

4.6.3 Limited Dependent Variables Reprise
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◼ The average causal effect of childbearing is

◼ 𝐸 𝑌1𝑖 − 𝑌0𝑖 = 𝐸 1 𝑋𝑖
′𝛽0 + 𝛽1 > 𝜀𝑖 − 1 𝑋𝑖

′𝛽0 > 𝜀𝑖

◼ While the average effect on the treated is

◼ 𝐸 𝑌1𝑖 − 𝑌0𝑖| 𝐷𝑖 = 1 = 𝐸ሼ
ሽ

1 𝑋𝑖
′𝛽0 + 𝛽1 > 𝜀𝑖 −

1 𝑋𝑖
′𝛽0 > 𝜀𝑖 | 𝑋𝑖

′𝛾0 + 𝛾1 > 𝑣𝑖

4.6.3 Limited Dependent Variables Reprise
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◼ Under normality, the average causal effect is

𝐸 1 𝑋𝑖
′𝛽0 + 𝛽1 > 𝜀𝑖 − 1 𝑋𝑖

′𝛽0 > 𝜀𝑖

= 𝐸 Φ
𝑋𝑖
′𝛽0 + 𝛽1
𝜎

− Φ
𝑋𝑖
′𝛽0
𝜎

◼ The effect on the treated is a little more complicated 
since it involves the bivariate normal CDF

◼ 𝐸 𝑌1𝑖 − 𝑌0𝑖 𝐷𝑖 = 1 =

𝐸
Φ𝑏

𝑋𝑖
′𝛽0+𝛽1

𝜎𝜀
,
𝑋𝑖
′𝛾0+𝛾1𝑍𝑖

𝜎𝑣
; 𝜌𝜀𝑣 −Φ𝑏

𝑋𝑖
′𝛽0

𝜎𝜀
,
𝑋𝑖
′𝛾0+𝛾1𝑍𝑖

𝜎𝑣
; 𝜌𝜀𝑣

Φ𝑏
𝑋𝑖
′𝛾0+𝛾1𝑍𝑖

𝜎𝑣

4.6.3 Limited Dependent Variables Reprise
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◼ Now we are estimating the effect of a single 
endogenous regressor, stored in a vector 𝑥, on a 
dependent variable, stored in the vector 𝑦, with no 
other covariates.

𝑦 = 𝛽𝑥 + 𝜂

◼ The associated first-stage equation is:

𝑥 = 𝑍𝜋 + 𝜉

◼ OLS estimates are biased because 𝜂𝑖 is correlated 
with 𝜉𝑖. The instruments, 𝑍𝑖 are uncorrelated with 𝜉𝑖
by construction and uncorrelated with 𝜂𝑖 by 
assumption.

4.6.4 The Bias of 2SLS
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◼ After tedious calculation, we can get that

𝐸 መ𝛽2𝑆𝐿𝑆 − 𝛽 ≈
𝜎𝜂𝜉

𝜎𝜉
2

1

𝐹 + 1

◼ From this we see that as the first stage F-statistic 

gets small, the bias of 2SLS approaches 
𝜎𝜂𝜉

𝜎𝜉
2 . The bias 

of the OLS estimator is 
𝜎𝜂𝜉

𝜎𝑥
2 , which also equals 

𝜎𝜂𝜉

𝜎𝜉
2 if 

𝜋 = 0

◼ On the other hand, the bias of 2SLS vanishes when 
F gets large, as it should happen in large samples 
when 𝜋 ≠ 0

4.6.4 The Bias of 2SLS
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◼ The LIML estimator is approximately median-
unbiased for over-identified constant-effects models, 
and therefore provides an attractive alternative to 
just-identified estimation using one instrument at a 
time.

◼ It has two advantages:

1. Having the same large-sample distribution as 2SLS 
while providing finite-sample bias reduction.

2. Many statistical packages compute it while other 
estimators typically require some programming.

4.6.4 The Bias of 2SLS
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◼ So what should we handle this problem in practice?

1. Report the first stage and think about whether it 
makes sense.

2. Report the F-statistic on the excluded instruments. 
The bigger this is, the better.

3. Pick your best single instrument and report just-
identified estimates using this one only.

4. Check over-identified 2SLS estimates with LIML.

5. Look at the coefficients, t-statistics, and F-statistics 
for excluded instruments in the reduced-form 
regression of dependent variables on instruments.

4.6.4 The Bias of 2SLS
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