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4.6.1 2SLS Mistakes

B |n the Manual 2S5LS procedure, you estimate the
first stage yourself, and plug the fitted values into
the second stage equation, which is then estimated
by OLS

S; = M1X; + M11Z; + $y;
Vi =a'X; +pSi + [n; + p(S; = §i)]

B X; is a set of covariates, Z; is a set of excluded
instruments, and the first stage fitted values are

A ! !
Si = Xmyo+m14;



4.6.1 2SLS Mistakes with covariate Ambivalence

B Example: Constructing 2SLS estimates of a wage
equation that treats AFQT scores as an endogenous
control variable to be instrumented.

B The instruments for AFQT are early schooling
(completed before military service), race, and family
background variables.

S; = myoXg; + M1 Z; + &4
Y; = agXo; + apXqi + pSi + [n; + p(S; — §;)]



4.6.1 2SLS Mistakes with Forbidden Regressions

B Example:
The causal model of interest: Y; = a’'X; + pD; + n;
The usual 2SLS first stage D; = myg X; + 711 Z; + &4

B Suppose that we use Probit to model E|[D;|X;, Z;],
The Probit first stage is

Dpi = P[X{mpo+mp1Zi]

B In the second stage, substitute D,,; for D;
Y; = a'X; + pDyp; + [n; + p(D; — Dp;)]



4.6.1 2SLS Mistakes with Forbidden Regressions

B A simple alternative:

B Instead of plugging in nonlinear fitted values, we
can use the nonlinear fitted values as instruments.

B Advantage: if the nonlinear model gives a better
approximation of the first-stage CEF than the linear
model, the resulting 25LS estimates will be more
efficient than those using a linear first stage.

B Disadvantage: it implicitly uses nonlinearities in the
first stage as a source of identifying information..



4.6.1 2SLS Mistakes with Forbidden Regressions

B Example: the causal relation between schooling and
earnings is approximately quadratic

Vi =a'X; + pisi + pisi +
B This model treats both s; and s{ as endogenous. In

this case, there are two first-stage equations, one for
s; and one for s/

B Jt's natural to use Z; and its square (unless Z; is a
dummy)



4.6.1 2SLS Mistakes with Forbidden Regressions

B Or maybe we can work with a single first stage
Vi = a'X; + padi + 028" + i + p1(Si = 80) + p2 (S = 5]
B This is a mistake since §; can be correlated with
S2 — 8, while §;* can be correlated with both S; — §;
2 A2
and S{ — §;
B On the other hand, as long as X; and Z; are
uncorrelated with 7; , and you have enough

instruments in Z; , 2SLS estimation of is
straightforward.



4.6.2 Peer Effects

Peer Effects means the causal effect of group
characteristics on individual outcomes.

There are two types of peer effects. The first
concerns the effect of group characteristics such as
the average schooling in a state or city on
individually-measured outcome variable.

The second is the effect of the group average of a
variable on the individual level of this same
variable.



4.6.2 Peer Effects

B The first type links the average of one variable to
individual outcomes as described by another
variable.

B Example: whether a given individual’s earnings are
atfected by the average schooling in his or her state
of residence.

Vije = 8 + Ac + ¥Sje + psi + wje + 0y
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4.6.2 Peer Effects

Vije = 8 + A + ¥Sje + psi + wje + 1y

B A simpler version:
Yij = p+mes; + miS; +V;

B Where E[V;s;] = E[V;S;| = 0

B Y, is the log weekly wage of individual i in state j

W S is average schooling in the state
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4.6.2 Peer Effects

Let py denote the coefficient from a bivariate
regression of ¥;; on s; only

Let p; denote the coefficient from a bivariate
regression of ¥;; on §; only

Ty = p1 + $(Po — P1)
T, = $(p1— Po)

1
1—R?2

Where ¢ =
squared

> 1, and R? is the first-stage R-
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4.6.2 Peer Effects

The second type is not really an IV problem; it
takes us back to basic regression issues

Example: peer effect in high school graduation rates
Sij =u-+ TL'ZS]' + gij

where §;; is individual i’s high school graduation
status and S; is the average high school graduation
rate in school j, which i attends.

The regression of S;; on S; always has a coefficient
of 1
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4.6.2 Peer Effects

A modestly improved version of the bad peer
regression

Sij = n+ Sy + $ij
Where S(;); is the mean of S;; in school j, excluding

student i

But it’s still problematic because S;; and S;); are
both affected by school-level random shocks
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4.6.2 Peer Effects

The best shot focuses on variation in ex ante peer
characteristics

Example: The link between classmates’ family
background, as measured by the number of books
in their homes, and student achievement in
European primary schools.

Sij = W +maBpyj + &
Where B;); is the average number of books in the
home of student i’s peers
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4.6.2 Peer Effects

B Another Example:

B The impact of bused-in low-achieving newcomers
on high-achieving residents’ test scores

Sij = U + 7'[37?_1]' + fij

B Where m; is the number of bused-in low-achievers
in school j and §;; is resident-student i’s test score
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4.6.3 Limited Dependent Variables Reprise

B 25LSis not the only way to go

B An alternative more elaborate approach tries to
build up a causal story by describing the process
generating LDVs in detail

B Example: Bivariate Probit

B Suppose that a woman decides to have a third child
by comparing costs and benefits using a net benetfit
function or latent index that is linear in covariates
and excluded instruments, with a random
component or error term, v;
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4.6.3 Limited Dependent Variables Reprise

B The bivariate Probit first stage can be written
D; = 1[X;yo + v12; > vi]

B Where z; is an instrumental variable that increases
the benefit of a third child, conditional on covariates,
Xi

B An outcome of primary interest in this context is
employment status, a Bernoulli random variable
with a conditional mean between zero and one.

Y; = 1[X{Bo + B1D; > €]

B Where ¢; is a second random component or error
term
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4.6.3 Limited Dependent Variables Reprise

B The source of omitted variables bias in the bivariate
Probit setup is correlation between v; and ¢;

B So the parameters can be estimated by maximum
likelihood

X:Bo+ B1D; Xiyo+ v1Z;
ZYiln(I)b(llBO B1D; Xivo Y1l;p€v)+(1_yi)ln[1

)

O gy

) )

S XBo + P1D; Xivo +v1Zi ]
b o, o, EV
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4.6.3 Limited Dependent Variables Reprise

B The potential outcomes defined by the bivariate
Probit model are

B Y, =1[X/Bo > ¢] and Yq; = 1[X[Bo + 1 > €]

B While potential treatment assignments are

B Dy =1[X/yo > v;] and Dy; = 1[X[yo + v1 > v;]
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4.6.3 Limited Dependent Variables Reprise

B The average causal effect of childbearing is

B E[Yy; — Yol = E{Q1[X;Bo + B1 > &] — 1[X; o > &}

B While the average effect on the treated is

B E[Yy; — Yl Dy =1] = E{1[X{Bo + 1 > &] —
1[X;{Bo > &l | Xivo +v1 > vi}
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4.6.3 Limited Dependent Variables Reprise

B Under normality, the average causal effect is

E{1[X{Bo + B1 > &] — 1:_Xi’180 > &}
_ E{CD [X{,BO + B4 @ X{G,Bo }
o

B The effect on the treated is a little more complicated
since it involves the bivariate normal CDF

B E[Y;; —YylD;=1] =

I/ !/
XiBotB1 XijYotVviZ;
y Pev |~

‘
q)b( Og ’ op
E <

o X{Y0+V1Zi
y o )
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4.6.4 The Bias of 2SLS

Now we are estimating the effect of a single
endogenous regressor, stored in a vector x, on a
dependent variable, stored in the vector y, with no
other covariates.

y=px+n
The associated first-stage equation is:
x=Zn+¢&

OLS estimates are biased because 7; is correlated
with &;. The instruments, Z; are uncorrelated with ¢;
by construction and uncorrelated with n; by
assumption.
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4.6.4 The Bias of 2SLS

B After tedious calculation, we can get that

~ B _ O'ng 1
E[IBZSLS IB] ~ 0'52 F+1

B From this we see that as the first stage F-statistic
o
gets small, the bias of 2S5LS approaches — The bias
f

o
7725 if

O¢

T=20

B On the other hand, the bias of 2SLS vanishes when
F gets large, as it should happen in large samples
whenm # 0
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4.6.4 The Bias of 2SLS

B The LIML estimator is approximately median-
unbiased for over-identified constant-effects models,
and therefore provides an attractive alternative to
just-identified estimation using one instrument at a
time.

B ]t has two advantages:

1. Having the same large-sample distribution as 2SLS
while providing finite-sample bias reduction.

2. Many statistical packages compute it while other
estimators typically require some programming.
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4.6.4 The Bias of 2SLS

B So what should we handle this problem in practice?

1. Report the first stage and think about whether it
makes sense.

2. Report the F-statistic on the excluded instruments.
The bigger this is, the better.

3. Pick your best single instrument and report just-
identified estimates using this one only.

4. Check over-identified 2SLS estimates with LIML..

5. Look at the coefficients, t-statistics, and F-statistics
for excluded instruments in the reduced-form
regression of dependent variables on instruments.
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4.6.4 The Bias of 2SLS

Table 4.6.2: Alternative IV estimates of the economic returns to schooling

(1) (2) (3) (4) (5) (6)

2SLS 0.105 0435 0.080 0076  0.093  0.091
(0.020) (0.450) (0.016) (0.029) (0.009) (0.011)
LIML 0.106 0539  0.093 0081  0.106 0.110

(0.020) (0.627) (0.018) (0.041) (0.012) (0.015)
F-statistic (excluded instruments)  32.27 0.42 4.91 1.61 2.58 1.97

Controls
Year of birth v v v v v v
State of birth v v
Age, Age squared v v v

FEzxcluded Instruments

Quarter of birth v v
Quarter of birth*year of birth v v v v
Quarter of birth*state of birth v v
Number of excluded instruments 3 2 30 28 180 178

Notes: The table compares 2SLS and LIML estimates using alternative sets of
instruments and controls. The OLS estimate corresponding to the models reported
in columns 1-4 is .071; the OLS estimate corresponding to the models reported in
columns 5-6 is .067. Data are from the Angrist and Krueger (1991) 1980 Census

sample. The sample size is 329,509. Standard errors are reported in parentheses.
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4.6.4 The Bias of 2SLS
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Figure 4.6.1: Distribution of the OLS, IV, 2SLS, and LIML estimators. IV uses one instrument, while 2SLS
and LIML use two instruments.
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4.6.4 The Bias of 2SLS
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Figure 4.6.2: Distribution of the OLS, 2SLS, and LIML estimators with 20 instruments
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4.6.4 The Bias of 2SLS
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Figure 4.6.3: Distribution of the OLS, 2SLS, and LIML estimators with 20 worthless instruments
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